

Regd Post with A/D

Ref.No.: MGM/P&E/ 707/19

Date: 26/09/2019

The Member Secretary, State Pollution Control Board, Orissa, A/118, Nilakantha Nagar, Bhubaneswar, Odisha-751012

Sub: Submission of Annual Environment Statement (FORM-V) for Joda West Manganese Mine, M/s TATA Steel Ltd. for the year 2018-19.

Dear Sir,

We are enclosing herewith Annual Environment Statement in Form-V for Joda West Manganese Mine, M/s TATA Steel Ltd. for the year ending 31st March'2019.

This is for your kind perusal.

Thanking you,

Yours faithfully,

F: TATA STEEL LTD.

Agent & 24/09/19

Head, Manganese Gr. of Mines Ferro Alloys & Minerals Division, Joda.

Encl: as above.

Copy to : (1) The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonihar, Odisha-758001

(2) Central Pollution Control Board Southernd Conclave, Block 502, 5th & 6th Floors 1582 Rajdanga Main Road Kolkata - 700 107 (W. B.)

ENVIRONMENTAL STATEMENT

2018-19

UNDER RULE 14 OF ENVIRONMENT (PROTECTION) RULES, 1986

In

FORM - V

JODA WEST MANGANESE MINES TATA STEEL LIMITED

SEPTEMBER 2019

Environmental Statement: Joda West Manganese Mines – 2018-19

FORM V [See Rule 14 of Environment (Protection) Rules, 1986]

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31ST MARCH 2019

PART - A

(i) Name and Address of the Owner / occupier of the industry operation or process.

Name and Address of the Owner / : JODA WEST MANGANESE MINE

Nominated Owner :- Mr. T.V. Narendran.

Managing Director, M/s TATA Steel Ltd. Jamshedpur, Dist- East Singhbhum

Jharkhand - 831001

Agent:

Mr. Amit Kumar Dubey

Head (Manganese Group of Mines), Joda,

FA & MD, TATA Steel

P.O.: Bichhakundi, Via : Joda Dist : Keonjhar, Orissa – 758034

(ii) Industry Category : Opencast Mining

(iii) Production Capacity – Units : 1,80,000 TPA (Manganese Ore)

(iv) Year of Establishment : 1933

(v) Date of the last environmental: 28th Sept'2018

statement submitted

PART - B

Water and Raw Material Consumption

(1) Water Consumption m³/day

Process: 49.22 m³/day (Water sprinkling – Avg. during 2018-19)

Cooling : Nil

Domestic : 266.15 m³/day (Avg. during 2018-19)

Name of the Products	Process water consumption	per unit of product output
	During the previous	During the current
	Financial year	Financial year
	(1)	(2)
(1) Manganese Ore	Nil	Nil

Remarks: Manganese Ore is produced by semi mechanized Mining method, which does not involve beneficiation and thus precludes the consumption of water.

(2) Raw material consumption

Name of the	Name of	Consumption of raw materials per unit						
raw materials	the product	During the previous	During the current					
		Financial year	Financial year					
Manganese	Manganese	<u> Year – 2017-18</u>	<u>Year – 2018-19</u>					
Ore	Ore	Production :-	Production :-					
		69595.740 MT	64866.193 MT					
		Dispatch :-	Dispatch :-					
		57927.890 MT	59359.38 MT					

Remarks: Produced Manganese Ore dispatched to Ferro Alloys Plants within India.

PART – C

Pollution discharged to environment / unit of output

(Parameter as speci	fied in the Consents iss	ued)							
Pollution	Quantity of	Concentrations of	Percentage of						
	pollutants	Pollutants in	variation from						
	discharged	discharges	prescribed						
	(mass/day)	(mass/volume)	standards with						
			reasons						
(a) Water	removal of overbur size and then trans	inganese Ore production den, breaking and sizing sportation to the custom ter. Thus, there is no pro	g of ore to required er does not require						
	The monthly average of surface water quality data for the year 2018-19 is enclosed as Annexure – I . It shows that the concentrations of the pollutants are well within the permissible standards.								
(b) Air	to the movement of etc, which is fugitive fugitive dust is allay	n cast Mine, the dust general real real real real real real real	ds, drilling activities t be quantified. The er by mobile tanker						
	Annexure – II. It sh	ge ambient air quality ows that the concentrati permissible standards.							

PART - D

Hazardous Wastes

[As specified under the Hazardous and Other Waste (Management and Transboundary Movement) Rules, 2016]

Hazardous	Wastes	Total Quantity						
		During the previous	During the current					
		Financial year	Financial year					
		<u> Year – 2017-18</u>	<u>Year – 2018-19</u>					
(i) From Proce	SS							
Waste Oil	(in Ltrs.)	09 kg	Nil					
Used Oil	(in Ltrs.)	410 litrs.	932 litrs.					
Cotton Was	te (in Kgs)	Nil	Nil					
Duster	(in Nos.)	Nil	Nil					
Filters	(in Nos.)	Nil	Nil					
(ii) From pollut	ion control	Nil	Nil					
facilities								

PART - E

Solid Wastes

	Financial year Financial year Year - 2017-18 Year - 2018-19 12,12,144 MT 1279988 MT				
_	During the previous	During the current			
	Financial year	Financial year			
	<u> Year – 2017-18</u>	<u> Year – 2018-19</u>			
(a) From Process	12,12,144 MT	1279988 MT			
(Overburden rejects) (b) From pollution control facilities	Nil	Nil			
(c) (1) Quantity recycled or	Nil	Nil			
re-utilized within the unit (2) Sold (3) Disposal	Nil 12,12,144 MT	Nil 1279988 MT			

PART - F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

- **Characterization of Hazardous Waste: -** The composition of hazardous wastes like Waste Oil & used oil are Hydrocarbons, lead and used acids. The composition of the solid wastes (Overburden and rejects) contains lateritic morrum, shale and quartzite.

- Disposal Practice:-

- SOLID WASTES -The overburden is systematically and scientifically dumped on a geologically barren area and the same will be reclaimed by plantation after being declared inactive.
- ➤ WASTE OIL -The waste oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced and caution board displayed. During transfer of waste oil to barrels, a trough is placed underneath in order to prevent land contamination due to oil spillage. Then at a fixed interval, these barrels are returned to Ferro Manganese Plant Stores for final disposal through auction to the authorized party.
- ➤ USED COTTON WASTES The used cotton wastes generated at various locations are kept in designated barrels and at a fixed interval, these wastes are handed over to the Shift in-charge of the Furnace Section of FAP, Joda for incinerating in the Electric Are Furnace at a temperature of more than 1100 degree C.
- ➤ Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

- 1. Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- 2. All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweet morrum over it.
- 3. Wet drilling has been implemented in all drills. Controlled blasting pattern is being followed.
- 4. A multi-stage sedimentation basin with check dam had been provided at H'Quarry to prevent direct flow of surface run off to Kundra Nallah, a perennial source of water flowing along the western lease boundary. We have provided 07 nos. multi stage check dams with settling pits to further arrest the run-off and provide effective run-off management considering peak rainfall data. A double stage check dam at eastern boundary of lease provided and all the rainwater were channelized for settling of rain water silt before discharge from lease.

- 5. 24345 nos. of saplings of various forestry species were planted within the leasehold areas covering an area of 2.39 hectare at Joda West Mn.Mine.
- 6. The utilization of environment management for the period 2018-19 was Rs. 3382198/- including Environmental Monitoring, Plantation activities and construction of toe-wall, check dams and garland drains.
- 7. In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.

PART - H

Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution.

- a) Garland drains and toe wall around the OB dumping shall be provided to check and channelize surface run-off.
- b) Plantation of forestry species shall be done over the inactive waste dump slopes to arrest the airborne dust.

PART - I

Any other particulars for improving the quality of environment.

- 1. With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - Ground Water Level at nearby bore wells
 - Trace metal in dust fall
 - Ground water quality at lower level
 - Meteorological monitoring
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- 2. Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution:-
 - Water sprinkling on the haul road,
 - Provision of dust masks to the workmen.
 - Adoption of wet drilling arrangement in the drill machines and
 - Black topped road in the residential colony.
- 4. Measures taken to control Water Pollution:-
 - Construction of toe wall and garland drain along the dump slope to prevent surface run-off during monsoon.
 - Construction of soak pits for discharge of sanitary sewage.

- Provision of oil separation pit for effluents coming out of work shop.
- 5. Measures taken to control Noise & Ground Vibration :-
 - Thick plantation has been developed around the mines and office building to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and
 - Workmen are provided with ear-muff while working near heavy earth moving machineries.
- 6. Measures taken to control Land Degradation: -
 - Afforestation around the non-active dump for stabilization and
 - Reclamation and rehabilitation of mined out area as per approved Scheme of Mining.
- 7. Nursery Development: Local self-help groups are engaged for development of centralized nursery to grow the forestry saplings & vetiver to facilitate the plantation programme at all the Manganese Mines under same management control.
- 8. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) is conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO classifications. Total 384 contractual employees and 35 departmental employees have undergone PME during FY 2018-19. There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease.
- 9. The mine is certified with ISO-14001 (Environment Management System).

Manager

Joda West Manganese Mine.

M/s.TATA STEEL LTD.

Annexure – **I**: Surface Water Quality Monitoring at Joda West Mn Mine (W1 Kundra Nala Entering H Quarry)

Joda West (kundra Nala Entering H Quarry)			April-18	May'18	June'18	July,18	Aug-18	Sept-18
Parameters	Unit	Standard	Result	Result	Result	Result	Result	Result
Dissolved Oxygen (minimum)	mg/l	4	5.9	6.2	5.8	6.2	6.2	5.1
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coli form	MPN/100 ml	5000	310	210	240	228	228	220
pH Value		6.0-9.0	7.14	7.22	7.28	712	712	7.22
Colour (max)	Hazen	300	CL	CL	1	1.8	1.8	CL
Total Dissolved Solids	mg/l	1500	130	137	137	142	142	129
Copper as Cu (max)	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Iron as Fe (max)	mg/l	0.5	0.4	0.38	0.36	0.31	0.31	0.42
Chloride (max)	mg/l	600	27	32	36	32	32	26
Sulphates (SO ₄) (max)	mg/l	400	4.9	5.2	5.6	4.8	4.8	4.5
Nitrate as NO ₃ (max)	mg/l	50	1.68	1.88	1.82	1.12	1.12	1.9
Fluoride as F (max)	mg/l	1.5	0.018	0.022	0.021	0.02	0.02	0.02
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium as Cd (max)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anionic Detergents (max)	mg/l	1.0	<0.2	< 0.2	< 0.2	< 0.2	< 0.2	<0.2
Joda West (kundra Nala Entering H Quarry)			Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
Dissolved Oxygen (minimum)	mg/l	4	7.1	7.3	5.4	6.6	5.2	6.8
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
Total Coli form	MPN/100 ml	5000	270	260	387	220	320	380
pH Value		6.0-9.0	7.3	7.2	7.45	7.18	7.18	7.56
Colour (max)	Hazen	300	1	1	CL	1	CL	CL
Total Dissolved Solids	mg/l	1500	181	212	145	152	154	152
Copper as Cu (max)	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Iron as Fe (max)	mg/l	0.5	0.31	0.31	0.45	0.32	0.41	0.52
Chloride (max)	mg/l	600	26	26	24	30	28	36
Sulphates (SO ₄) (max)	mg/l	400	3.7	3.4	4.8	4.2	4.6	5.6
Nitrate as NO ₃ (max)	mg/l	50	1.2	1.4	1.9	1.4	2.1	2.4
Fluoride as F (max)	mg/l	1.5	0.01	0.021	0.01	0.02	0.021	0.01
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cadmium as Cd (max)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anionic Detergents (max)	mg/l	1.0	< 0.2	< 0.2	<0.2	<0.2	< 0.2	< 0.2

Annexure – **I**: Surface Water Quality Monitoring at Joda West Mn Mine (W2 Kundra Nala Leaving H Quarry)

Annexure – 1: Surface Water Quality Monitoring at Joda West Mn Mine (W2 Kundra Nala Leaving H Quarry)											
Joda West (Kundra Nallah Leaving H Quarry)			April-18	May'18	June'18	July,18	Aug-18	Sept-18			
Parameters	Unit	Standard	Result	Result	Result	Result	Result	Result			
Dissolved Oxygen (minimum)	mg/l	4	5.8	6.3	6.1	6	6	5.3			
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8			
Total Coli form	MPN/100 ml	5000	450	270	310	220	220	170			
pH Value		6.0-9.0	7.2	7.25	7.16	7.18	7.18	7.18			
Colour (max)	Hazen	300	CL	CL	2	2	2	CL			
Total Dissolved Solids	mg/l	1500	138	142	142	138	138	134			
Copper as Cu (max)	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Iron as Fe (max)	mg/l	0.5	0.42	0.4	0.42	0.36	0.36	0.47			
Chloride (max)	mg/l	600	30	34	40	36	36	30			
Sulphates (SO ₄) (max)	mg/l	400	5.1	5.4	5.6	4.2	4.2	4.8			
Nitrate as NO ₃ (max)	mg/l	50	1.88	1.96	1.88	1.18	1.18	2.1			
Fluoride as F (max)	mg/l	1.5	0.02	0.021	0.022	0.018	0.018	0.018			
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Cadmium as Cd (max)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND			
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Anionic Detergents (max)	mg/l	1.0	<0.2	< 0.2	<0.2	< 0.2	<0.2	<0.2			
Joda West (Kundra Nallah Leaving H Quarry)	<u> </u>		Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19			
Dissolved Oxygen (minimum)	mg/l	4	6.9	7.1	5.5	6.2	5.1	7.1			
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8			
Total Coli form	MPN/100 ml	5000	220	180	320	240	280	460			
pH Value		6.0-9.0	7.62	7.52	7.36	7.34	7.29	7.51			
Colour (max)	Hazen	300	1	CL	CL	1	CL	CL			
Total Dissolved Solids	mg/l	1500	156	180	135.4	158	162	162			
Copper as Cu (max)	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Iron as Fe (max)	mg/l	0.5	0.38	0.22	0.31	0.36	0.32	0.31			
Chloride (max)	mg/l	600	29	34	20	36.0	22	44			
Sulphates (SO ₄) (max)	mg/l	400	4.5	4.4	4.9	4.4	4.2	6.2			
Nitrate as NO ₃ (max)	mg/l	50	1.35	1.6	1.4	1.2	1.6	2.6			
Fluoride as F (max)	mg/l	1.5	0.012	0.026	0.023	0.02	0.038	0.032			
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Cadmium as Cd (max)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001			
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND			
Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01			
Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05			
Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05			
nexa Chromium as Cr	mg/i	0.05	<0.03	~0.03	<0.03	~0.03	~0.03	~0.03			

	Annexure-II: Ambient Air Quality Monitoring Report, JWIMM, Sampling Location-JW (Time office)												
	PARAMETERS												
	PM ₁₀	PM _{2.5}	SO ₂	NOx	O ₃	CO	NH ₃	Pb	Ni	As	C ₆ H ₆	BaP	Mn
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	mg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(ng/m ³)	(ng/m^3)	$(\mu g/m^3)$	(ng/m ³)	$\mu g/m^3$)
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	60	80	80	180	4	400	1	20	6	5	1	
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part-50, Appendix-L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)-1974	IS 5182 : Part.10-1999	Air Sampling , 3rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO- 3.2	APHA 22nd- 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA IO-3.2
Apr-18	73.11	36.86	4.43	14.23	8.64	0.43	22.94	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
May-18	49.34	23.94	4.30	11.13	<4.0	0.35	< 20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jun-18	46.27	22.17	4.06	10.70	<4.0	0.33	21.20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jul-18	46.72	21.4	4.0	10.28	<4.0	0.29	20.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.015
Aug-18	39.91	26.10	4.35	10.54	<4	0.28	21.13	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sep-18	43.48	21.14	4.07	9.75	<4.0	0.31	19.75	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct-18	44.00	18.89	4.15	9.34	<4.0	0.28	22.5	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov-18	48.75	24.89	4.20	9.34	<4.0	0.36	22.52	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec-18	55.54	26.19	4.18	9.34	<4.0	0.48	18.16	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jan-19	52.60	27.1	4.12	9.6	<4.0	0.42	19.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Feb-19	58.68	29.55	4.44	9.44	<4.0	0.55	22.30	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Mar-19	64.42	32.53	8.42	10.64	4.26	0.61	22.30	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001

			Ambient	Air Qualit	y Monitoring I	Report, JWI	IMM, Sampling L	ocation-	Near JW (H quarry)			
	PARAMETERS												
	PM ₁₀	PM _{2.5}	SO_2	NOx	O_3	СО	NH ₃	Pb	Ni	As	C ₆ H ₆	BaP	Mn
	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	mg/m ³)	$(\mu g/m^3)$	$(\mu g/m^3)$	(ng/m ³)	(ng/m ³)	$(\mu g/m^3)$	(ng/m ³)	$\mu g/m^3$)
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	60	80	80	180	4	400	1	20	6	5	1	
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part-50, Appendix-L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)-1974	IS 5182 : Part.10- 1999	Air Sampling , 3rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO- 3.2	APHA 22nd- 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA IO-3.2
Apr-18	78.84	40.75	5.11	15.64	4.8	0.47	25.51	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
May-18	53.60	26.01	4.59	11.90	<4.0	0.40	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jun-18	51.50	25.43	4.18	12.30	<4.0	0.36	22.80	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.011
Jul-18	50.11	22.5	4.0	11.8	<4.0	0.29	21.9	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.012
Aug-18	50.56	22.74	4.40	11.56	<4.0	0.29	<20.0	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Sep-18	48.60	23.89	4.33	11.44	<4.0	0.33	21.15	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Oct-18	41.80	22.51	4.22	10.71	<4.0	0.31	20.55	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Nov-18	44.45	23.69	4.27	10.74	<4.0	0.34	20.75	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Dec-18	52.33	24.94	4.27	10.99	4.17	0.44	21.75	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Jan-19	51.21	25.2	4.36	11.2	4.2	0.41	20.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Feb-19	53.89	27.53	4.57	11.51	4.5	0.51	22.07	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
Mar-19	68.80	29.73	4.52	11.19	4.37	0.42	21.66	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001