

Regd Post with A/D

Ref.No.: MGM/P&E/406 /19 Date: 30/05/2019

To,

The Additional Director,
Ministry of Environment and Forest & Climate Change
Eastern Region Office,
A/3, Chandrasekharpur,
Bhubaneswar-751023

Sub: Submission of Six-monthly EC compliance report on implementation of safeguards in respect of Joda West Iron and Manganese Mine, M/s TATA Steel Ltd. for the period October 2018 to March 2019.

Dear Sir,

We are submitting herewith six-monthly EC compliance report on implementation of safeguards in respect of Joda West Iron and Manganese Mine, M/s TATA Steel Ltd. for the period October 2018 to March 2019 as per EIA notification 2006. The same is also attached in Soft copy to your good office on e-mail to roez.bsr-mef@nic.in for your ready reference.

We trust that the measures taken towards environmental safeguards comply with the stipulated conditions. We look forward to your guidance which shall certainly help us in our endeavor for improving upon our environmental management practices.

This is for your kind perusal.

Thanking you, Yours faithfully, F: TATA STEEL LTD.

Agent, Joda West Iron and Manganese Mine &

Head, Manganese Gr. of Mines

Ferro Alloys & Minerals Division, Joda.

Encl: as above.

Copy to:

- 1. Zonal Office Kolkata, Central Pollution Control Board, Southernd Conclave, Block 502, 5th and 6th Floors, 1582 Rajdanga Main Road, Kolkata, West Bengal 700107.
- 2. The Member Secretary, State Pollution Control Board, A/118, Nilakantha Nagar, Bhubaneswar, Odisha-751012.
- 3. The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Odisha-758001.

COMPLIANCE REPORT PERIOD: Oct' 18 to March' 19

ENVIRONMENTAL CLEARANCE TO JODA WEST IRON AND MANGANESE MINE OF TATA STEEL LIMITED VIDE MoEF's LETTER NO. J-11015/86/2004-1A. II (M) DATED 13.09.2005

COMMENTS SUBMITTED TO THE MINISTRY OF ENVIRONMENT & FORESTS, GOVERNMENT OF INDIA

Present Status of the Project: -

The Scheme of Mining & Progressive Mine Closure Plan from 2013-14 to 2017-18 over an area of 1437.719 ha. has been approved by Indian Bureau of Mines, Bhubaneswar vide letter no. MS/OTFM/47-ORI/BHU/2012-13, Dt.21.05.2013. The review of Mining plan under Rule no. 17(2) of MCR 2016 and submitted under Rule no. 23 of MCDR 2017 with proposal for the period of 2018-2023 is approved vide letter No. MS/OTFM/18-ORI/BHU/2017-18/2016, Dt. 09/11/2017.

	T	
Sl. no	A: Specific conditions	Compliance status
1	Mining shall not be undertaken in areas of forestland within the lease without the necessary approvals / forestry clearance.	We have obtained the Forest Clearance vide MoEF's letter no. F.No.8-89/2004-FC, dt.10.08.2007 over an area of 436.678 ha of forest land within Joda West Iron and Mn. Mine.
		We have applied for forest diversion over an area of 730.635 ha on 25.11.2015, which is under process.
		Further, as per MoEF & CC Circular dated F.No.8-78/1996-FC, dated 10.03.2015, an area of 79.239 ha. of non-forest land was recorded as forest in Govt. records as on 25.10.1980. Hence, fresh forest diversion proposal over an area of 79.239 ha has been applied on 20.06.2016 and the same is under process.
		The mining operation and allied activities are confined within the approved diverted area only.
2	Topsoil should be stacked properly with proper slope at earmarked site(s) with adequate measures and should be used for reclamation and rehabilitation of mined out area.	Agreed. Topsoil stacked properly at earmarked site whenever generated and in need used for plantation in mines.
3	OB and other wastes should be stacked at earmarked sites only and should not be kept active for long periods of time.	OB and other wastes are being dumped as per approved Scheme of Mine of Joda West Iron and Manganese Mine.

	Plantation should be taken up for soil stabilization along the slopes of the dump and terraced after every 5-6 m of height and overall slope angle shall be maintained not exceeding 28°. Sedimentation pits shall be constructed at the corners of the garland drains. Retention/toe walls shall be provided at the base of the dumps.	The dump is terraced at every 10m and overall slope is maintained well within 28° as per approved Scheme of Mining. The inactive portion of OB dumps area being stabilized by plantation of local species. During the year 2018-19, 24345 nos. of saplings were planted. Beside this we also planted around 42536 nos. of vetiver slips. The retaining wall and garland drain with sedimentation pit at corners near toe at low lying area and uplift portion of OB dump has been constructed. Their dimensions are matching the requirements to arrest the run off effectively.
4	Minerals rejects shall be stacked separately at earmarked site/dump only.	The mineral rejects generated during manual processing of manganese ore (i.e. sorting, dressing and sizing) has been stacked separately at earmarked site.
5	Catch drains and siltation ponds of appropriate size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The drains should be regularly desilted and maintained properly. Garland drains (size, gradient & length) and sump capacity should be designed keeping 50% safety margin over and above the peak sudden rainfall and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material.	Existing catch drains and garland drains are covering the entire dump slope at bottom part. The run off from garland drains are collected in settling/sedimentation pits. The catch drains and sedimentation pits are periodically de-silted and maintained properly. Size, gradient and length of the drains are adequate to take care of the peak flow. A series of check dams and settling pits have been provided for proper settlement of suspended solid in surface runoff.
	Storm water return system should be provided. Storm water should not be allowed to go to the effluent treatment plant during high rainfall/super cyclone period. A separate storm water sump for this purpose should be created.	
6	Dimension of retaining wall at the toe of OB dumps and benches within the mine to check run-off and siltation should be based on the rainfall data.	To prevent the siltation and check the run-off, retaining wall and garland drain are provided with the dimension as; Dimension of the Retaining Wall: Height – 1 to 1.2 mtr. Width – 1 mtr. Dimension of the Garland Drain: Depth – 1.20 to 1.5 mtr. Width – 1 to 1.2 mtr. A multi-stage sedimentation basin with check dam had been provided at H' Quarry to prevent direct flow of surface run off to

		Kundra Nallah, a perennial source of water flowing along the western lease boundary.
7	Trace Metals such as Ni, Co, As and Hg should be analyzed in dust fall and soil samples for at least one year during summer, monsoon and winter seasons. If concentrations of these metals are found below the standards then with prior approval of MOEF this specific monitoring could be discontinued.	Samples have been analyzed in dust fall & soil during summer season and monsoon season. The detail analysis result is enclosed as Annexure-IX (Dust Fall) & Annexure -X (Soil).
8	Mine Mineral and OB transportation shall be in trucks/dumpers covered with tarpaulins.	The trucks are being covered with tarpaulin during dispatch of manganese ore from mine to Ferro Alloys Plant and Railway Siding located at Joda. OB is being transported by shovel – dumper combination from mine face to dumps located near the quarry itself within 1.5 Km. So, it is not in practice to cover the OB transportation trucks with tarpaulin.
	Vehicular emissions should be kept under control and regularly monitored. Suitable measures should be taken to check fugitive emissions from haulage roads & transfer points, etc.	All the trucks meant for transportation of mineral from mine to our captive plant & railway siding at Joda is bearing the "Pollution under Control' certificate. The emissions are under control. There is provision of water sprinkling by mobile water sprinklers to suppress fugitive emission from haul roads and other area having potential of producing air borne dust. We have also installed fixed-type water sprinklers along haul road in D-Quarry. The processed manganese ore is being transferred manually; hence there less fugitive emission during transfer of ore.
		The results of Ambient Air Quality done during the period Oct'18 to March'19 is enclosed as Annexure-IV and V.
9	A green belt of adequate width should be raised by planting the native species around ML area. Plantation should also be carried out along roads, OB dump sites etc. in consultation with the local DFO / Agriculture Department. The density of the trees should be not less than 2500 plants per ha.	Reclamation and plantation program have been drawn. We have planted around 11.54 lakh nos. of trees over an area around 225.9 ha till 2018-19 at safety zone, OB dump and as avenue plantation. The tree density is maintained at the rate of more than 2500 saplings per ha. • During the year 2018-19, 24345 nos. of saplings were planted. Beside this we also planted around 42,536 nos. of vetiver slips & 239 fruit bearing plants planted at nearby villages.

10	Groundwater shall not be used for mine operations. Prior approval of CGWA shall be obtained for using groundwater.	We have obtained NOC from CGWA vide NOC No. CGWA/NOC/MIN/ORIG/2018/3888, Dated 09.08.2018 for a quantity of 146 cum/day.
11	Mining will not intersect groundwater. Prior permission of the MOEF and CGWA shall be taken to mine below water table.	Mining is not intersecting the ground water as the Ground water being at lower level in comparison to existing maximum quarry depth.
12	Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells and constructing new piezometers. The monitoring should be done for quantity four times a year in pre-monsoon (April / May), monsoon (August). Postmonsoon (November) and winter (January) seasons and for quality in May. Data thus collected should be submitted	Ground water table is much below the existing mine workings because of mining operations are confined at hilly topography only. However, ground water level & quality at existing well at separate location is being monitored. The ground water quality monitoring results and level are enclosed as Annexure VII & VIII respectively.
13	to the MoEF & CGWA quarterly. Trace metals such as Fe, Cr ⁺⁶ , Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water downstream and in ground water at lower elevations from mine area, shall be periodically monitored in consultation with the OSPCB and State Ground Water Board. Suitable treatment measures shall be undertaken in case levels are found to be higher than permissible limits.	Trace metals such as Fe, Cr ⁺⁶ , Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500. The details of analysis result for ground water and surface water with standards are enclosed as Annexure -VI & VII respectively.
14	"Consent to Operate" should be obtained from SPCB before expanding mining activities.	"Consent to operate" has been obtained from State Pollution Control Board, Orissa vide letter no. 3012/IND-I-CON-186 dated 18.02.16 and Consent order no. 67 valid 31.03.2021.
15	Conservation Plan for conservation of endangered fauna including the Indian Elephant found in and around the mine area shall be prepared and implemented in consultation with identified agencies/institutions and with the State Forest Department. The Plan should be dovetailed with that prepared/under implementation/proposed for the endangered fauna found in the Reserve Forest in the buffer zone of the project site. The costs for the specific activities/tasks should be earmarked in the Conservation Plan and shall not be diverted for any other purpose. Yearwise status of the implementation of the	We have deposited Rs.56,30,000/- on 05.07.2006 through Canara Bank D.D. No.481301 to 481307 being the contribution towards implementation of Wild Life Management Plan prepared for Bonai & Keonjhar division. Further, as per subsequent demand of forest department, additional amount of Rs. 2,31,24,380 and Rs 3,30,67,537 has been deposited through RTGS towards differential payment for implementation of Regional Wildlife Management Plan prepared for Bonai & Keonjhar division and the DFO, Keonjhar, Orissa was intimated accordingly.

	Plan and the expenditure thereon should be reported to the Ministry of Environment & forests, RO, Bhubaneshwar.	Site Specific Will been approved SSP-93/2015 dat Further, we have 9,79,48,000/- too Joda West Iron mode in Odi No.N3461704305	vide memo ed 31 st Aug 2 deposited a wards SSWLO & Mn. Mine isha CAMP	no. 7726/1WL-015. n amount of Rs. CP in respect of through NEFT
16	A Final Mine Closure Plan along with details of Corpus Fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	A progressive min 2013-14 to 2017 IBM along with the Further, Progress period of 2018 submitted under The final mine cloof Corpus fund Ministry of Environt of final mine close	ne closure pla 7-18 has been ne Scheme of sive mine clos 19 to 2021 the Rule No. osure plan al- will be su onment & Fo	en approved by Mining. Sure plan for the 2-23 has been 23, MCDR 2017. ong with details bmitted to the rests in advance
Sl.	B: General Conditions	Con	ipliance Stat	tus
1 1	No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests.	No change in mir working has bee changes propose workings, prior a Ministry of Enviro	n made at t d in technolo pproval shall	he mine. If any egy and scope of l be sought from
2	No change in the calendar plan including excavation, quantum of manganese ore and waste should be made.	Excavation plan Manganese ore a and is being strict for total excavation for the year 2018 Table: Plan vs Year- 2018-19 Total Excavation (cum) Production (MT)/cum OB Removal (cum)	n for tot nd waste has tly adhered. T on, manganes -19 is given i	al excavation, s been prepared The actual figure se ore and waste n table below.
3	Four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RPM. SPM, SO ₂ , NO _x . Monitoring. Location of the stations should be decided based on the meteorological data, topographical features, and environmentally and ecologically	Five ambient air have been establ core zone (Near residential and m and 3 nos. in but Bonaikela, Bansp Samples are draw zone and once in	ished out of Office clos ining area ne uffer zone (a ani) wn twice in	which 2 nos. in se proximity to ear to H-Quarry) at Khandbondh, a week in core

		,
	sensitive targets in consultation with the State Pollution Control Board. Data on ambient air quality (RPM, SPM, SO2, %, NOv.), should be regularly	ascertain the 24 hour monitoring average for PM ₁₀ , PM _{2.5} , SO ₂ , NOx, CO, Mn NH3, BaP, benzene, As, Ni and Pb .and reports are being submitted to OSPCB every month.
	SO2 & NOx.) should be regularly submitted to the Ministry including its Regional office at Bhubaneshwar and the State Pollution Control Board / Central	It was observed that the environmental parameters are within the prescribed limit.
	Pollution Control Board once in six months.	Abstract of the monthly monitoring data on ambient air quality and Water quality are enclosed as Annexure – IV & V .
4	Drills should be wet operated or with dust extractors and controlled blasting should be practiced.	Wet drilling concept is already in place. Controlled blasting technique with NONEL is in practice.
5	Fugitive dust emissions from all the sources should be controlled regularly monitored and data recorded properly. Water spraying arrangements on haul roads, wagon loading, dumpers/ trucks, loading & unloading points should be provided and properly maintained.	Effective water sprinkling by mobile water tanker is being done on haul roads and other area having potential of producing air borne dust. Additionally, we have also installed fixed-type water sprinklers along haul road at D-Quarry. The results of Ambient Air Quality done during the period Oct'18 to March'19 is enclosed as Annexure-IV .
6	Adequate measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in blasting and drilling operations, operations of HEMM, etc should be provided with ear plugs/	Ear plugs & Ear muffs are provided to the workers working in mining operation & DG operations. Rests of operations are below the noise levels of 80 dBA. The details of noise monitoring for the period
	muffs.	Oct'18 to March' 19 are enclosed as Annexure-XI.
7	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 191b May, 1993 and 31st December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	The oil separation system has been provided at workshop and working effectively. This is being centrally used for maintenance of all the Equipment running at Joda West Iron & Mn Mine.
8	Environmental laboratory should be established with adequate number and type of pollution monitoring and analysis equipment in consultation with the State Pollution Control Board.	It is being done by M/s Visiontek Consultancy Service Pvt. Ltd (Recognized as "A" category consultant as by State Pollution Control Board, Odisha).
		The type of pollution monitoring and analysis equipment used by by M/s Visiontek Consultancy Service Pvt. Ltd is enclosed as Annexure – XII.
9.	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.	Suitable dust masks are being provided to employees (departmental & contractual) engaged in dusty operations. It is also ensured that they use the same. Employees are undergoing Periodical Medical Examination

	Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	which is inclusive of lungs function test and audiometry. All the personnel are trained on safety in work place and continuous awareness program are being conducted for all employees to avert manganese poisoning. Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood hematology, blood pressure, detailed cardiovascular assessment, neurological examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO classifications. Total 384 contractual employees and 35 departmental employees have undergone PME during FY 2018-19. There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease.
10	A separate environmental management cell with suitable qualified personnel should be set up under the control of a Senior Executive, who will report directly to the Head of the Organization.	The department is in place and the Head of the department is reporting to General Manager of the division. The organizational structure in place is
11	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry and its Regional Office located at Bhubaneswar.	enclosed as Annexure-XIII. Funds allocated for environmental management are spent only for environment related purposes and not diverted to any other purpose. During the year 2018-19, Rs.560407 was allocated for construction of Toe wall & garland drain against which we have spent Rs 832352. For plantation activity Rs. 562500 was allocated against which we have spent Rs. 440645. Similarly, for environment monitoring Rs10,00,000 was allocated against which we have spent Rs.9,79,615.
12	The Regional Office of this Ministry located at Bhubaneshwar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data / information / monitoring reports	We are providing full co-operation to the officers of the Regional Office by furnishing the requisite data / information / monitoring reports.

13	A copy of clearance letter will be marked	Copy of the clearance letter marked to
	to the concerned Panchayat/local NGO, if	Chairman, Municipal Council, Joda on
	any, from whom suggestion/	12.01.2006.
	representation has been received while	
	processing the proposal.	
14	The State Pollution Control Board should	This is applicable to State Pollution Control
	display a copy of the clearance letter at	Board, Orissa.
	the Regional Office, District Industry	
	Centre and Collector's Office/Tehsildar's	
	Office for 30 days.	
15	The project authorities should advertise	A detail of Environmental Clearance with
	at least in two local newspapers widely	regard to Joda West Manganese Mine was
	circulated around the project, one of	published in Oriya News Papers Dharitri &
	which shall be in the vernacular of the	Sambad 17.10.2005.
	locality concerned within seven days of	
	the issue of the clearance letter	
	informing that the project has been	
	accorded environmental clearance and a	
	copy of the clearance letter is available	
	with the State Pollution Control Board	
	and may also be seen at Web Site of the	
	Ministry of Environment & Forests at	
	http://envfor.nic.in. and a copy of the	
	same should be forwarded to the	
	Regional Office of this Ministry located at	
	Bhubaneswar.	
16	The Ministry or any other competent	Noted
	authority may stipulate any further	
	condition for environmental protection.	_
17	Failure to comply with any of the	Noted
	conditions mentioned above may result	
	in withdrawal of this clearance.	
18	The above conditions will be enforced,	Noted
	inter alia, under the provisions of the	
	Water (Prevention & Control of	
	Pollution) Act, 1974, the Air (Prevention	
	& Control of Pollution) Act, 1991 along	
	with their amendments and rules.	

Additional Conditions as per MoEFCC Letter No. 106-9/11/EPE dt. 02.12.2014 issued to all Non-Coal Mining Projects.

S.No.	Stipulated Condition	Compliance Status
1.	The project authority shall adopt best	The best scientific method of mining is in
	mining practices for given conditions in	practice at Joda West Iron and Manganese
	the mining area, adequate number of	Mine. Garland grain and Retaining wall are
	check dam, retaining wall/ structure,	provided at the toe of the overburden dumps.
	garland drains and settling ponds should	Settling ponds are done at intervals along the
	be provided to arrest the wash off with	garland drain. A five-stage check dam has
	rain water in catchment area.	been provided at H Quarry of the mine to
		arrest the surface run off with rain water.
2.	The natural water bodies and or stream	The natural water bodies which are flowing
	which are flowing in and around the	around the nearby villages are not disturbed

	village should not be disturbed. The water table should be nurtured so as not go down below the pre-mining period. In case of any water scarcity in the area, the project authorities have to provide water to the villagers for their use. A provision for regular monitoring of water table in open dug well.	by mining activity. The ground water table is being monitored regularly from the open well and tube well of nearby villages. Drinking water is provided to the villagers through pipe line and overhead tanks.
3.	The illumination and sound at night at project sites disturb the village in respect of both human and animal population. Consequent sleeping disorder and stress may affect the health in the village located close to mining operation. Habitations have a right to darkness and minimal noise level at night. The Project Proponents must ensure that the biological clock of the village is not disturbed by orienting the floodlights mask way from the village and keeping the noise levels well within prescribed limits for day/ night hours.	The operation of the mine is restricted to the day light hours only. Hence, there is no disturbance to the habitats located close to the mining operation. The biological clock of the village is not disturbed.
4.	The project Authority shall make necessary alternative arrangement, where required, in consultation with state Government to provide alternative areas for livestock grazing. In this case context, the Project Authority should implement the direction of Hon'ble Supreme Court with regard to acquiring grazing land. The sparse tress on such grazing ground, which provides mid-day shelter from the scorching sun, should be scrupulously guarded felling lest the cattle abandon the grazing ground or return home by noon.	Not Applicable. There is no grazing land within the M.L. area.
5.	Where ever blasting is undertaken as part of mining activity, the Project Authority shall carry out vibration studies well before approaching any such habitats or other building to evaluate the zone of influence and impact of blasting on neighbourhood. Within 500 meters of such sites vulnerable to blasting vibration, avoidance of use of explosives and adoption of alternative means of mineral extraction such as ripper/dozer combination/ rock breakers/ surface mineral etc should be seriously considered and practiced wherever practicable. A provision for monitoring of each blast should be made so that	Deep hole drilling and controlled blasting technique has been adopted in the mine. Vibration study has been done with the help of CIMFR and vibration limit (ppv) found within the limit. Provision for monitoring each blast has been established to ascertain the blast induced vibration (ppv) limit at different distances from the center of blasting.

	impact of blasting on nearby habitation	
	and dwelling unit could be ascertained.	
	The covenant of lease deed under rule 31	
	of MCR 1960 provided that no mining	
	operation shall be carried out within 50	
	meters of public works such as public	
	roads and building or inhabited sites	
	except with prior permission from the	
	competent Authority.	
6.	Main haulage road in the mines should be provided with permanent water sprinkler and other road should be regularly wetted water tanker fitted with sprinkler. Crusher and material transfer points should be invariably be provided with bag filter and or dry fogging system. Belt conveyor fully covered to avoid air borne dust.	The main haulage road, mineral stacking area overburden dumping areas are regularly sprinkled with water by using water tankers. There is a plan to cover part of the main haulage road with automatic water sprinkling arrangements in future.
7.	The project Authority shall ensure that	Not Applicable.
'`	productivity of agriculture crops is not	There is no crop land nearby the M.L. area.
	affected due to the mining operation.	There is no crop land nearby the Mizh area.
	Crop Liability Insurance Policy has to be	
	taken by PP as a precaution to	
	compensate for the crop loss. The impact	
	zone shall be 5 Km from the boundary of	
	mine lease area for insurance policy. In	
	case, several mines are located in cluster	
	mines, formed inter – alia, to sub serve	
	such and objective shall be responsibility	
	for securing such Crop Liability Policy.	
8.	In case any village is located within the	Not Applicable
	mining leasehold which is not likely to be	
	affected due to mining activities during	
	the life of mine, the Expert Appraisal	
	Committee (EAC) should consider the	
	proposal of Environmental Clearance	
	(EC) for reduced mining area. The	
	mining lease may be executed for the	
	area for which EC is accorded. The	
	mining plan also accordingly revised and	
	required stipulation under the MMDR	
	Act 1957 and MCR 1969 met.	
9.	Transportation of minerals by road	There is no transportation road passing
	passing through the village shall not be	through any village.
	allowed. A "bypass" road should be	
	constructed (say leaving a gap of at least	
	200 m) for the purpose of transportation	
	of minerals so that the impact of sound,	
	dust and accidents could be mitigated.	
	The PP shall bear the cost towards the	
	widening and strengthening of existing	
	public road network in case same is	
1	proposed to be used for the project. No	

	1	
	road movement should be allowed on existing village road network without appropriately increasing carrying capacity of such road	
10.	Likewise, alteration or re-routing of foot paths, pagdandies, cart road and village infrastructure/ public utilities or roads (for purpose of land acquisition for mining) shall be avoided to extent possible and in such case acquisition is inevitable, alternative arrangements shall be made first and the only the area can be acquired. In these types of cases Inspection reports by site visit by expert may be insisted upon which should be done through reputed Institutes.	Not Applicable
11.	The CSR activates by companies including mining establishment has become mandatory up to 2% their financial turn over, socio Economic Development of neighborhood. Habitats could also be planned and executed by the PPs more systemically based on need based door to door survey by established Social Institute/ Workers on the lines as required under TOR. "R&R Plan//compensation details for Project Affected People (PAP) should be furnished. While preparing the R&R plan, the relevant State/ national Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs and STs and weaker section of society in study, a need bashed sample survey, family-wise, should be undertaken to assess their requirement, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line department of State Government. It may be clearly brought out whether the village including their R&R and socio-economics aspect should be discussed in EIA report.	Tata Steel has taken up many social initiatives for the upliftment of the education, health and other socio-economic development of the neighboring villages. TSRDS (Tata Steel Rural Development Society) has been pioneering the initiatives through CSR activities. R&R policy has not been applicable for the PP till now.

Yours Faithfully F: Tata Steel Limited

Agent, Joda West Iron and Manganes Mines & Head (Manganese Group of Mines), Joda

TATA STEEL LIMITED

JODA WEST IRON AND MANGANESE MINE

ANNEXURE-I: SURFACE WATER QUALITY ANALYSIS REPORT OCTOBER-18 to MARCH-19

Sampling Location: SW-1: Kundra Nallah entering H. Quarry SW-2:Kundra Nallah leaving H.Quarry

Sl. No	Parameter	Unit	Standard as per IS:2296:1992, Class'C'	Octobe	er 2018	Noveml	ber 2018	Decemb	ber 2018	Januar	ry 2019	Februa	ry 2019	Marc	h 2019
				SW-1	SW-2	SW-1	SW-2	SW-1	SW-2	SW-1	SW-2	SW-1	SW-2	SW-1	SW-2
1	Dissolved Oxygen (minimum)	mg/l	4	7.1	6.9	7.3	7.1	5.4	5.5	5.6	5.2	5.2	5.1	6.8	7.1
2	BOD (3) days at 270C (max)	mg/l	3	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8	< 1.8
3	Total Coli form	MPN/100 ml	5000	270	220	260	180	387	320	389	312	320	280	380	460
4	pH Value		6.0-9.0	7.3	7.62	7.2	7.52	7.45	7.36	7.23	7.12	7.18	7.29	7.56	7.51
5	Colour (max)	Hazen	300	1	1	1	CL	CL	CL	CL	CL	CL	CL	CL	CL
6	Total Dissolved Solids	mg/l	1500	181	156	212	180	145	135.4	156	124.5	154	162	152	162
7	Copper as Cu (max)	mg/l	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
8	Iron as Fe (max)	mg/l	0.5	0.31	0.38	0.31	0.22	0.45	0.31	0.56	0.21	0.41	0.32	0.52	0.31
9	Chloride (max)	mg/l	600	26	29	26	34	24	20	25	19	28	22	36	44
10	Sulphates (SO4) (max)	mg/l	400	3.7	4.5	3.4	4.4	4.8	4.9	4.5	4.4	4.6	4.2	5.6	6.2
11	Nitrate as NO3 (max)	mg/l	50	1.2	1.35	1.4	1.6	1.9	1.4	1.8	1.2	2.1	1.6	2.4	2.6
12	Fluoride as F (max)	mg/l	1.5	0.01	0.012	0.021	0.026	0.01	0.023	0.02	0.035	0.021	0.038	0.01	0.032
13	Phenolic Compounds as C6H5OH (max)	mg/l	0.005	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
14	Cadmium as Cd (max)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
15	Selenium as Se (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
16	Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
19	Zinc as Zn(max)	mg/l	15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
20	Hexa Chromium as Cr +6	mg/l	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
21	Anionic Detergents (max)	mg/l	1	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

ANNEXURE-II : JODA WEST DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT OCTOBER-2018 to MARCH-2019

Sampling Location:STPW-1:STP (Inlet) STPW-2: STP (Outlet)

Sl. No	Parameter	Unit	Standards (In land Surface water)	Octobe	er 2018	Novemb	per 2018	Decemb	per 2018	Jar	ı-19	Feb)-1 9	Mar	r-19
				STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2	STPW-1	STPW-2
1	Colour & Odour	Hazen	Colourless/Odourless as far as practicable	05 & pungent smell	CL & U/O	06 & pungent smell	CL & U/O	03 & pungent smell	CL & U/O	03 & pungent smell	CL & U/O	02 & pungent smell	CL & U/O	03 & pungent smell	CL & U/O
2	Suspended Solids	mg/l	100	276	15	290	24	92	27	95	26	96	30	94	28
3	Particulate size of SS		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850	< 850	< 850	< 850	< 850	< 850	< 850	< 850	< 850
4	pH Value		5.5-9.0	7.24	7.6	6.94	7.42	6.35	7.21	6.38	7.12	6.41	7.18	6.48	7.26
5	Temperature	°C	Shall not exceed 50C above the receiving water	23	23	23	23	21	21	21	21	25	25	36	36
6	Oil & Grease(max)	mg/l	10	ND	ND	ND	ND	2.3	ND	2.5	ND	2.8	ND	2.4	ND
7	Total Residual Chlorine	mg/l	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	mg/l	50	2.5	ND	2.3	ND	4.7	0.458	5.9	0.46	6.2	0.39	5.1	0.56
9	Total Kjeldahl nitrogen (as NH3)	mg/l	100	8.6	2.1	8.1	2.6	15.6	1.2	6.8	1.8	10.8	2.1	16.2	1.8
10	Free ammonia (as NH3)	mg/l	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	BOD(3 days at 270C (max)	mg/l	30	6.3	7.2	38.2	8.2	52.6	5	26	4	36.2	3.2	32.8	3.8
12	Chemical Oxygen Demand as COD	mg/l	250	240	3.1	242	36	188	21	182	20	176	18	184	18
13	Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
14	Mercury (Hg)	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
15	Lead as Pb(max)	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	Cadmium as Cd (max)	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr+6	mg/l	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
18	Total Chromium (Cr)	mg/l	2	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
19	Copper as Cu (max)	mg/l	3	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
20	Zinc as Zn(max)	mg/l	5	0.36	< 0.05	0.65	< 0.05	0.32	< 0.05	0.41	< 0.05	0.46	< 0.05	0.44	< 0.05
21	Selenium (Se) (max)	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
22	Nickel (Ni)	mg/l	3	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
23	Cyanide as CN (max)	mg/l	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	Fluoride as F (max)	mg/l	2	0.13	0.08	0.61	0.013	0.11	0.023	0.23	0.023	0.29	0.019	0.18	0.018
25	Dissolved Phosphates (P)	mg/l	5	0.21	< 0.05	0.56	< 0.05	0.25	< 0.05	0.25	< 0.05	0.22	< 0.05	0.31	< 0.05
26	Sulphide (S)	mg/l	2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
27	Phenolic Compounds as C6H5OH (max)	mg/l	1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
28	Bio-assay test		90% survival of fish after 96 hours in 100% effluent	90% survival of fishes	100% survival of fishes	82% survival of fishes	99% survival of fishes	79% survival of fishes	98% survival of fishes	79% survival of fishes	98% survival of fishes	90% survival of fishes	99% survival of fishes	85% survival of fishes	100% survival of fishes
29	Manganese (Mn)	mg/l	2	0.03	< 0.005	0.07	< 0.005	0.026	< 0.005	0.024	< 0.005	0.018	< 0.005	0.041	< 0.005
30	Iron as Fe (max)	mg/l	3	1.2	0.08	1.7	0.09	1.23	0.1	1.23	0.1	1.23	0.16	1.54	0.16
31	Vanadium (V)	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
32	Nitrate Nitrogen	mg/l	10	1.8	0.32	1.9	0.45	2.34	0.65	2.28	0.64	2.6	0.68	2.48	0.74

	ANNEX	KURE-	III : QUARRY WATER QUALI	TY ANALYS	IS REPORT (OCTOBER TO) MARCH-19		
	JODA-WES	ST (D-QU	ARRY)	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
Sl.	Parameters	Unit	General Standards for discharge of Environmental Pollutants Part A- Effluents	Analysis Report	Analysis Report	Analysis Report	Analysis Report	Analysis Report	Analysis Report
1	Colour	Hazen	5	CL	CL	CL	CL	CL	CL
2	Odour	-	Unobjectionable	U/O	U/O	U/O	U/O	U/O	U/O
3	pH at 250C	-	5.5-9.0	7.43	7.56	7.12	7.56	7.58	7.34
4	Total Dissolved Solids	mg/l	-	95.8	92	79	85	88	94
5	Copper as Cu	mg/l	3.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6	Fluoride as F	mg/l	2.0	0.012	0.025	0.012	0.023	0.021	0.024
7	Total Residual Chlorine	mg/l	1.0	ND	ND	ND	ND	ND	ND
8	Iron as Fe	mg/l	3.0	0.31	0.22	0.34	0.34	0.32	0.44
9	Manganese as Mn	mg/l	2.0	0.13	0.18	0.045	0.156	0.18	0.052
10	Nitrate as NO3	mg/l	10.0	1.51	1.2	1.34	2.45	2.32	1.46
11	Phenolic Compounds as C6H5OH	mg/l	1.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12	Selenium as Se	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
13	Cadmium as Cd	mg/l	2.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
14	Cyanide as CN	mg/l	0.2	ND	ND	ND	ND	ND	ND
15	Lead as Pb	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
16	Mercury as Hg	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
17	Nickel as Ni	mg/l	3.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
18	Arsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
19	Total Chromium as Cr	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
20	Zinc as Zn	mg/l	5.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
21	Hexavalent Chromium as Cr+6	mg/l	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
22	Vanadium as V	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
23	Total Suspended Solids	mg/l	100	62.8	24	31	36	42	46
24	Temperature	0C	shall not exceed 50C above the receiving	25	27	23	26	25	36
25	Dissolved Oxygen	mg/l	- water temperature	4.8	5.2	4.7	4.6	4.1	5.4
26	BOD	mg/l	30	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
27	COD	mg/l	250	21	26	12	15	18	21
28	Oil & Grease	mg/l	10	ND	ND	ND	ND	ND	ND
29	Ammonical Nitrogen as N	mg/l	50	ND	ND	ND	ND	ND	ND
30	Total Kjedahl Nitrogen as N	mg/l	100	0.53	0.58	0.97	0.89	1.2	1.62
31	Sulphide as S	mg/l	2.0	ND	ND	ND	ND	ND	ND
32	Free Ammonia as NH3	mg/l	5.0	ND	ND	ND	ND	ND	ND
33	Particulate Size of Suspended Solids	mg/l	850 μm IS Sieve	<850	<850	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve
34	Bio-assay	mg/l	90% survival in 100% effluent	92%	98%	All fishes survive in 100% effluent after 96 hrs	All fishes survive in 100% effluent after 96 hrs	All fishes survive in 100% effluent after 96 hrs	All fishes survive in 100% effluent after 96 hrs
35	Dissolved Phosphates as PO4	mg/l	5.0	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
33	Dissolved I nospilates as I O4	1118/1	3.0	<0.05	<0.05	₹0.05	<0.05	<0.05	~0.03

Sl.	JODA-WEST Parameters	Γ (H-QUA	ARRY)	Oct-18	NY 40	T 40		T 1 10	
Sl.	Parameters			Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
		Unit	General Standards for discharge of Environmental Pollutants Part A- Effluents	Analysis Report	Analysis Report	Analysis Report	Analysis Report	Analysis Report	Analysis Report
1 Co	olour	Hazen	5	CL	CL	CL	CL	CL	CL
2 O)dour	-	Unobjectionable	U/O	U/O	U/O	U/O	U/O	U/O
3 pI	H at 250C	-	5.5-9.0	7.48	7.6	7.56	7.65	7.61	7.64
4 To	otal Dissolved Solids	mg/l	-	79	88	78	86	82	106
5 Co	copper as Cu	mg/l	3.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
6 Fl	luoride as F	mg/l	2.0	0.03	0.018	0.032	0.035	0.018	0.044
7 To	otal Residual Chlorine	mg/l	1.0	ND	ND	ND	ND	ND	ND
8 Ire	on as Fe	mg/l	3.0	0.38	0.21	0.56	0.65	0.61	0.68
9 M	langanese as Mn	mg/l	2.0	0.11	0.16	0.086	0.098	0.084	0.091
10 Ni	litrate as NO3	mg/l	10.0	1.35	1	1.56	1.62	1.71	1.61
11 Ph	henolic Compounds as C6H5OH	mg/l	1.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12 Se	elenium as Se	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
13 Ca	admium as Cd	mg/l	2.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	vanide as CN	mg/l	0.2	ND	ND	ND	ND	ND	ND
	ead as Pb	mg/l	0.1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Mercury as Hg	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	lickel as Ni	mg/l	3.0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	rsenic as As	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	otal Chromium as Cr	mg/l	2.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	inc as Zn	mg/l	5.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	lexavalent Chromium as Cr+6	mg/l	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	anadium as V	mg/l	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	otal Suspended Solids	mg/l	100	27	22	36	39	40	54
	emperature	0C	shall not exceed 50C above the receiving water temperature	25	27	23	23	25	36
25 Di	Pissolved Oxygen	mg/l	-	4.2	5.6	5.3	5.8	5.2	5.6
	OD	mg/l	30	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8
	COD	mg/l	250	8.9	30	10.8	11.2	10.8	14.6
	oil & Grease	mg/l	10	ND	ND	ND	ND	ND	ND
	ammonical Nitrogen as N	mg/l	50	ND	ND	ND	ND	ND	ND
	otal Kjedahl Nitrogen as N	mg/l	100	0.48	0.51	0.74	0.65	0.71	0.82
	ulphide as S	mg/l	2.0	ND	ND	ND	ND	ND	ND
	ree Ammonia as NH3	mg/l	5.0	ND	ND	ND	ND	ND	ND
	articulate Size of Suspended Solids	mg/l	850 µm IS Sieve	<850.0	<850	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve
34 Bi	io-assay	mg/l	90% survival in 100% effluent	96%	92%	All fishes survive in 100% effluent after 96 hrs	All fishes survive in	All fishes survive in 100% effluent after 96 hrs	All fishes survive in 100% effluent after 96 hrs
35 Di	Pissolved Phosphates as PO4	mg/l	5.0	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

ANNEXURE-IV: Ambient Air Quality(Core Zone)

Joda West Iron and Manganese Mine Mines (Oct'18 to March'19)

							Concent	tration of Po	ollutants					
Location	Month	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (μg/m³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	Mn (µg/m3)
JW-Time Office	Oct'18	44.00	18.89	4.15	9.34	< 4.0	0.28	22.52	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.005
JW-H Quarry	000 16	41.80	22.51	4.22	10.71	< 4.0	0.31	20.55	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.003
JW-Time Office	Nov'18	48.75	24.89	4.20	9.34	< 4.0	0.36	22.52	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.005
JW-H Quarry	NOV 18	44.45	23.69	4.27	10.74	< 4.0	0.34	20.75	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.003
JW-Time Office	Doc!10	55.54	26.19	4.18	9.34	< 4.0	0.48	18.16	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.005
JW-H Quarry	Dec'18	52.33	24.94	4.27	10.99	4.17	0.44	21.75	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.003
JW-Time Office	Jan'19	62.53	30.52	4.40	9.74	< 4.0	0.57	23.32	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.005
JW-H Quarry	Jan 19	54.33	28.34	4.50	11.60	< 4.0	0.56	23.40	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.003
JW-Time Office	Feb'19	58.68	29.55	4.44	9.44	< 4.0	0.55	22.30	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.009
JW-H Quarry	ren 19	53.89	27.53	4.57	11.51	4.5	0.51	22.07	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.009
JW-Time Office	March'19	82.28	36.11	9.11	10.97	4.255556	0.61	22.30	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	0.010
JW-H Quarry	iviai Cii 19	68.80	29.73	4.52	11.19	4.366667	0.42	21.66	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001

ANNEXURE- V: AMBIENT AIR QUALITY MONITORING REPORT (BUFFER ZONE)

Month	Location			Parar	neters		
WOITE	Location	PM10	PM2.5	SO2	NOx	СО	HC
	Khondbandh	49.80	20.50	<4	<9	0.35	<0.001
Dec-18	Bounspani	45.60	23.50	<4	<9	0.18	<0.001
	Baneikela	49.80	21.50	<4.0	<9.0	0.50	<0.001
	Khondbandh	49.60	29.20	4.6	9.1	0.61	<0.001
Mar-19	Bounspani	50.80	30.80	4.9	9.4	0.68	<0.001
	Baneikela	56.60	30.80	5.1	9.6	0.62	<0.001

DRINKING WATER QUALITY ANALYSIS REPORT OCTOBER-18 TO MARCH-19

Sampling Location: Near Pump House-H

MICROBIOLOGICAL ANALYSIS OF WATER AS PER IS: 10500 - 2012

Sl No.	Test Parameters	Norms as per	IS:10500-2012	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
1	Total Coliform Organism MPN/100ml	Shall not be detectable	e in any 100ml sample	<2	<1.8	<1.8	<1.8	<1.8	<1.8
2	Faecal Coliforms			Absent	<1.8	<1.8	<1.8	<1.8	<1.8
3	E. Coli	Shall not be detectabl	e in any 100ml sample	Absent	Absent	Absent	Absent	Absent	Absent
				LYSIS OF WATER	AS PER IS: 10500 -	2012			
Sl No.	Test Parameters		IS: 10500-2012	Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19
		Desirable Limit	Permissible Limit						
	Colour (Hazen Unit)	5	15	CL	CL	CL	CL	CL	CL
	Odour	Agreeable	Agreeable	U/O	Agreeable	Agreeable	U/O	U/O	Agreeable
3	Taste	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	AL	AL	Agreeable
4	pH value (250C)	6.5 - 8.5	No Relaxation	7.62	7.52	7.32	7.56	7.14	7.46
	Turbidity in NTU	1	5	< 2.0	<1.0	<1.0	< 2.0	< 2.0	<1.0
	Total Dissolved Solids in mg/l	500	2000	72	138	68	54	61	76
7	Aluminium (as Al) in mg/l	0.03	0.2	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
8	Anionic Detergents (as MBAS) in mg/l	0.2	1	ND	< 0.2	< 0.2	<0.2	< 0.2	< 0.2
9	Boron (as B) in mg/l	0.5	1	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
10	Calcium (as Ca) in mg/l	75	200	12.3	11.2	8.6	5.9	8	10.2
11	Chloride (as Cl) in mg/l	250	1000	11.9	21	14	13	15	21
12	Copper (asCu) in mg/l	0.05	1.5	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
13	Fluoride (as F) in mg/l	1	1.5	< 0.01	0.011	< 0.01	< 0.01	< 0.01	< 0.01
14	Residual Free Chlorine in mg/l	0.2(Min.)		ND	ND	ND	ND	ND	ND
15	Iron (as Fe) in mg/l	0.3	1	0.092	0.22	0.08	0.06	0.11	0.086
16	Magnesium (as Mg) in mg/l	30	100	3.1	5.8	1.5	1.4	2.8	2.1
17	Manganese (as Mn) in mg/l	0.1	0.3	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	Mineral Oil mg/l	0.01	0.03	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
19	Nitrate (as NO3) in mg/l	45	No Relaxation	0.48	0.11	0.65	0.45	1.5	0.71
20	Phenolic Compounds (as C6H5OH) in mg/l	0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
21	Selenium (as Se) in mg/l	0.01	No Relaxation	< 0.001	< 0.05	< 0.001	< 0.001	< 0.001	< 0.001
22	Sulphate (as SO4) in mg/l	200	400	1.42	5.2	1.2	1.1	3.6	1.8
23	Alkalinity (as CaCO3) in mg/l	200	600	41	40.2	24	23	26	32
24	Total Hardness(as CaCO3) in mg/l	300	600	31.6	76	21	20	23	28
25	Cadmium (as Cd) in mg/l	0.003	No Relaxation	< 0.001	0.42	< 0.001	< 0.001	< 0.001	< 0.001
26	Cyanide (as CN) in mg/l	0.05	No Relaxation	ND	< 0.001	ND	ND	ND	ND
27	Lead (as Pb) in mg/l	0.01	No Relaxation	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
	Mercury (as Hg) in mg/l	0.001	No Relaxation	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
29	Arsenic (as As) in mg/l	0.01	0.05	< 0.001	< 0.05	< 0.001	< 0.001	< 0.001	< 0.001
30	Zinc (as Zn) in mg/l	5	15	< 0.05	1.8	< 0.05	< 0.05	< 0.05	< 0.05
	Chromium (as Cr+6) in mg/l			< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
	Poly Aromatic Hydrocarbon as PAH	< 0.0001		< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001
33	Pesticide	Absent		Absent	Absent	Absent	Absent	Absent	Absent

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: ENVLOY /9/R-22H GROUND WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF DEC-2018 ate: 02/01/19

Name of Industry

Joda West Manganese Mines (M/s TATA Steel Limited)

Sampling Location

GW-1:Parama Basti BW GW-2: Kamar Joda OW

2.

21.12.2018

Date of sampling Date of analysis

22.12.2018 To 28.12.2018

Sample collected by

VCSPL Representative in presence of TATA Representative

				Analysis I	Results
	Parameter	Unit	Standards as per IS: 10500, 2012	21.12.2	.018
l. No	Parameter		13. 10300, 2332	GW-1	GW-2
ential C	haracteristics			CL	CL
1	Colour	Hazen	5	Agreeable	Agreeable
2	Odour		Agreeable	Agreeable	Agreeable
3	Taste	H# 1	Agreeable	Agreeable <	<1
4	Turbidity	NTU	1	7.51	7.54
5	pH Value		6.5-8.5		
6	Total Hardness (as	mg/l	200	158.0	0.26-
***	CaCO ₃)	mg/l	0.3	0.35	36.0
7	Iron (as Fe)	mg/l	250	28.0	
8	Chloride (as Cl)	mg/l	0.2	ND	ND
9	Residual, free Chlorine	м.в.			261.0
	Characteristics	mg/l	500	206.0	264.0
10	Dissolved Solids	mg/l	75	38.0	42.0
11	Calcium (as Ca)	mg/l	30	10.8	11.6
12	Magnesium (as Mg)	mg/l	0.05	< 0.05	< 0.05
13	Copper (as Cu)	mg/l	0.1	0.024	0.026
14	Manganese (as Mn)	mg/l	200	4.6	5.2
15	Sulphate (as SO ₄)	-	45	2.4	2.9
16	Nitrate (as NO ₃)	mg/l	1	0.045	0.056
17_	Fluoride (as F) Phenolic Compounds (as	mg/l mg/l	0.001	<0.001	< 0.001
18	C ₆ H ₅ OH)			< 0.001	< 0.001
19	Mercury (as Hg)	mg/l	0.001	< 0.001	< 0.001
20	Cadmium (as Cd)	mg/l	0.003	<0.001	< 0.001
$\frac{20}{21}$	Selenium (as Se)	mg/l	0.01	<0.001	< 0.001
22	Arsenic (as As)	mg/l	0.01	ND	ND
23	Cyanide (as CN)	mg/l	0.05	<0.001	< 0.001
24	Lead (as Pb)	mg/l	0.01	<0.05	< 0.05
25	Zinc (as Zn)	mg/l	5	_	+
26	Anionic Detergents (as	mg/l	0.2	<0.2	<0.2
0.7281	MBAS) Chromium (as Cr ⁺⁶)	mg/l		<0.05	<0.03
27	Mineral Oil	mg/l	0.5	<0.01	136.0
28		mg/l	200	128.0	<0.001
29	Alkalinity Aluminium as(Al)	mg/l	0.03	< 0.001	<0.001
30		mg/l	0.05	< 0.01	
31	Poly Aromatic	μg/l	-	<0.001	<0.001
32	Hydrocarbon as PAH	mg/l	Absent	Absent	Absent
33	Pesticide	mg/1		siontek Consu	ONTE

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Eonfal /19 / R-18084 (1)

Date: 03/04/19

GROUND WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MARCH-2019

Name of Industry

Joda West Manganese Mines (M/s TATA Steel Limited)

Sampling location

GW-1: Premabasti BW GW-2: Kamr Joda OW

Date of sampling

16.03.2019

Date of analysis

18.03.2019 to 23.03.2019

Sample collected by

VCSPL Representative in presence of TATA Representative

SI. No	Parameter	Testing Methods	Unit	Standard as Per	Analysi	s Results
1	Color			IS 10500:2012	GW-1	GW-2
2	Odour	APHA 2120 B, C	Hazen	5	CL	CL
3	Taste	APHA 2150 B APHA 2160 C	-	Agreeable	Agreeable	Agreeabl
4	Turbidity	APHA 2130 B		Agreeable	Agreeable	Agreeabl
5	pH Value	APHA 4500H+ B	NTU	1	1.8	1.4
6	Total Hardness (as CaCO ₃)		**	6.5-8.5	7.42	7.38
7	Iron (as Fe)	APHA 2540 C	mg/l	300	112.0	121.0
8	Chloride (as Cl.)	APHA 3500Al B	mg/l	0,3	0.32	0.19
9	The state of the s	APHA 5540 C	mg/l	250	34.0	30.8
10	Residual, free Chlorine Dissolved Solids	APHA 4500B, B	mg/l	0.2	ND	ND
11	Control of the Contro	APHA 3500Ca B	mg/l	500	188.0	212.0
12	Calcium (as Ca)	APHA 4500CI- B	mg/l	75	40.2	42.2
13	Magnesium (as Mg)	APHA 3111 B,C	mg/l	30	18.8	22.4
14	Copper (as Cu)	APHA 4500F- C	mg/l	0.05	< 0.05	< 0.05
111	Manganese (as Mn)	APHA 4500CI, B	mg/I	0.1	0.018	0.021
15	Sulphate (as SO ₄)	APHA 3500Fe, B	mg/l	200	5.2	4.8
16	Nitrate (as NO ₃)	APHA 3500Mg B	mg/I	45	3.1	3.4
17	Fluoride (as F)	APHA 3500Mn B	mg/l	1	0.042	0.051
18	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5220 B	mg/l	0.001	<0.001	< 0.001
19	Mercury (as Hg)	APHA 4500 NO ₃ * E	mg/l	0.001	< 0.001	< 0.001
20	Cadmium (as Cd)	APHA 5530 B,D	mg/l	0.003	< 0.001	< 0.001
21	Selenium (as Se)	APHA 3114 B	mg/l	0.01	<0.01	< 0.001
22	Arsenic (as As)	APHA 4500 SO ₄ 2. E	mg/l	0.01	<0.01	< 0.001
23	Cyanide (as CN)	APHA 2320 B	mg/l	0.05	ND	ND
24	Lead (as Pb)	APHA 2340 C	mg/l	0.01	<0.01	< 0.001
25	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	2.4	3.1
26	Anionic Detergents (as MBAS)	APHA 4500 CN- C,D	mg/l	0.2	<0.2	<0.2
27	Chromium (as Cr*6)	APHA 3111 B,C	mg/l		< 0.05	< 0.05
28	Mineral Oil	APHA 3500 Hg	mg/l	0.01	< 0.03	
29	Alkalinity	APHA 3114 B	mg/l	200	72.0	<0.01
30	Aluminium as(Al)	APHA 3111 B,C	mg/l	0.03	<0.01	78.0
31	Boron (as B)	APHA 3500Cr B	mg/l	0.5	<0.01	< 0.01
32	Poly Aromatic Hydrocarbon (as PAH)	APHA 6440 B	μg/l	<0.0001	<0.0001	<0.5
33	Pesticide	APHA 6630 B,C	mg/l	Absent	Absent	Absent

Note: CL: Colourless, ND: Not Detected.

For Visioniek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlob/19/12-223

Date: 02/01/19

GROUND WATER LEVEL MONITORING REPORT FOR DEC-2018

1. Name of Industry :

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Date of Recording :

21.12.2018

3. Monitored by :

VCSPL Representative in presence of TATA Representative

SL.NO	Monitoring Date	Analysis Result (MT/BGL)
1	Kamar Joda OW	6.8 m
2	Banaikala OW	3.1 m

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envfab/19/R-1805(F)

Date: 03/04/19

GROUND WATER LEVEL ANALYSIS REPORT FOR THE MONTH OF MARCH-2019

1. Name of Industry

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Sampling location

GWL-1: Kamar Joda OW GWL-2: Baneikala OW

3. Date of sampling

16.03.2019

4. Sample collected by

VCSPL Representative in presence of TATA Representative

SL.NO	Sample Location	Analysis Result (m/bgl)
1	GWL1:Kamar Joda OW	6.2
2	GWL2: Baneikala OW	3.0

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R-225

Date: 02/01/19

TRACE METAL DUST FALL ANALYSIS REPORT FOR THE MONTH OF DEC-2018

Name of Industry

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location

F-1: Mines Area

Date of sampling

18.12.2018

4. Sample collected by

VCSPL Representative in presence of TATA Representative

			18.12.2018		
	Parameters	UNIT	RESULT		
F-1	Ni	(%)	<0.001		
	Co	(%)	<0.001		
	Hg	(%)	<0.001		
	As	(%)	< 0.001		

For Visiontek Consultancy Services Pvi. Dtd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R - 1581

Date: 03.04.19

DUST FALL MONITORING REPORT FOR THE MONTH OF MARCH-2019

Name of Industry

: Joda West Manganese Mines (M/s TATA Steel Limited)

Sample collected by

: VCSPL representative in presence of TATA representative.

SL.No.	Sample Type	Parameters	MARCH-2019	
			Unit	Analysis Result
1	F-1	Ni	(%)	<0.001
2		Co	(%)	< 0.001
3		Hg	(%)	<0.001
4		As	(%)	< 0.001

For Visiontek Consultancy Services Pvt. Ltd.

- ISO 14001 : 2004 OHSAS 18001 : 2007

(An Enviro Engineering Consulting Cell)

Ref.: @nv206/19/R-226

Date: 02/01/19

NOISE MONITORING REPORT FOR DEC-2018

1. Name of Industry :

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Date of Recording :

18.12.2018

3. Monitored by

VCSPL Representative in presence of TATA Representative

		Day time Equivalent	Night time Equivalent		
Sl. No	Date	Name of Location	Result		
1	18.12.2018	Town ship	db	65.6	45.8
2		Hospital		64.2	42.2
3		Mines Area		67.2	46.1
		Railway Sliding		57.3	47.8
CPCB Standard				75	70

For Visiontek Consultance Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab/19/R - 1578

Date: 03.04.19

NOISE MONITORING REPORT FOR MARCH-2019

1. Name of Industry :

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Date of Recording :

18.12.2018

3. Monitored by

VCSPL Representative in presence of TATA Representative

SI. No	Date	Name of Location	Unit	Day time Equivalent	Standard As per	Night time Equivalent	As per
				Result	CPCB	Result	CPCB
1		Town ship	dB	69.0	75	52.0	70
2	18.03.2019	Hospital		41.2	50	30.8	40
3		Mines Area		68.8	75	50.2	70
		Railway Sliding		59.6	75	41.2	70

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 · 2007

Ref.: Envlab/19/R-227

Date: 02/01/19

NOISE EQUIPMENT MONITORING REPORT FOR DEC-2018

1. Name of Industry : Joda West Manganese Mines (M/s TATA Steel Limited)

2. Date of Recording : 18.12.2018

3. Monitored by : VCSPL Representative in presence of TATA Representative

		EQUIPMEN'	Γ	
SI. No	Date	Name of Location	Unit	Result
1	7.7.	Near STP		53.6
2		DG Set		79.5
3		WTP(H -Quarry)		55.6
4		OR-09P- 8134(Truck)		64.2
5	15.12.2018	OD-O9N- 9454(Truck)		79.1
6		Volvo- EC460BLC(Sovel- 1)	dB	89.7
7		Volvo- EC460BLC(Sovel- 2)		79+.4
8		D-Quarry Pump House		59.8
9		Volvo EC360DL(Sovel-3)		88.7
10		Work Shop		69.8
11		OD-O9A-5665(Volvo Truck)		84.6
12		OD-O9A-4693(Volvo Truck)		87.2
		CPCB Standard		75

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Emulab /19/R-2018

Date: 03/04/19

EQUIPMENT NOISE MONITORING REPORT –MARCH 19

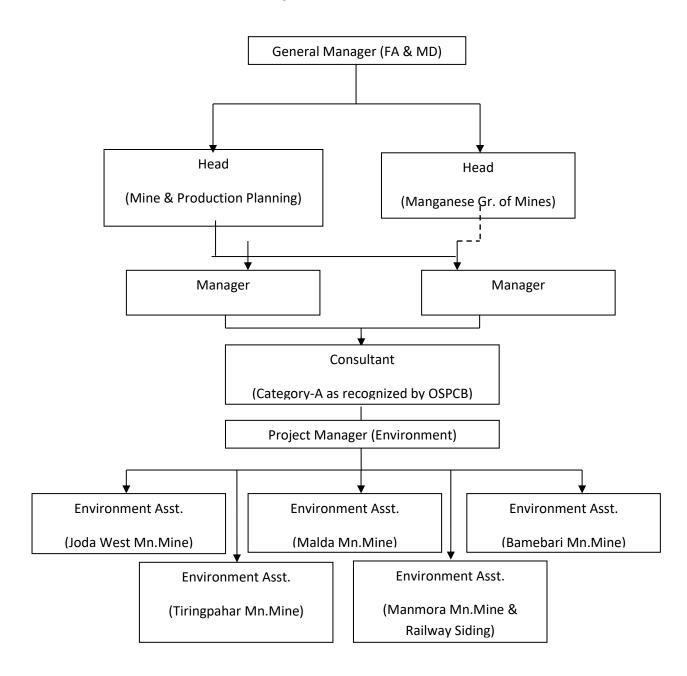
1. Name of Industry

Joda West Manganese Mines (M/s TATA Steel Limited)

2. Recorded By

VCSPL Representative in presence of TATA Representative

EQUIPMENT				
Sl. No	Date	Name of Location	Unit	Day Time Result
1		Near STP		54.2
2		DG Set	dB	71.2
3		WTP(H -Quarry)		56.8
4		OR-09P-8134(Truck)		70.8
5	29.03.2019	OD-O9N-9454(Truck)		72.8
6		Volvo-EC460BLC(Sovel-1)		74.4
7		Volvo-EC460BLC(Sovel-2)		74.1
8		D-Quarry Pump House		72.8
9		Volvo EC360DL(Sovel-3)		74.8
10		Work Shop		70.2
11		OD-O9A-5665(Volvo Truck)		72.8
12		OD-O9A-4693(Volvo Truck)	77 0	71.9


For Visiontel Consultancy Services Pvt. Ltd.

ANNEXURE-XII LIST OF ENVIRONMENTAL MONITORING EQUIPMENT Joda West Iron and Manganese Mine, M/S TATA STEEL LIMITED

	LIST OF ENVIRONMENTAL MONITO	PRING EQUIPMENT		
	Ambient Air Quali	ty		
Sl.No. Name of the Instrument		Parameter		
1	Respirable Dust sampler	PM ₁₀		
2	Fine Particulate Sampler	PM _{2.5}		
3	Spectrophotometer UV-Visible range	SO ₂ , NO _x		
4	NDIR	СО		
5	AAS	Manganese		
Other Paraphe	rnalia for analysis of air quality are also a	vailable in the laboratory.		
	Water Quality			
Sl.No.	Name of the Instrument	Parameter		
1	Analytical weighing Balance	Used for weighing the chemicals		
2	Micro Balance	Used for weighing CRMs		
3	AAS with VGA and Hallow cathode lamps	All Heavy metals (Arsenic, Mercury, Selenium, Cadmium, Chromium, Cobalt, Iron, Lead, Manganese, Zinc, Aluminium, etc)		
4	Spectrophotometer UV-Visible range	Nitrate, Nitrite, Sulphate, Chromium(VI), Fluoride, Cyanide, Phenolic compounds		
5	Flame Photometer	Sodium, Potassium		
6	Ion Analyzer	Fluoride		
7	BOD Incubator	BOD		
8	COD Digester	COD		
9	Furnace	Total volatile solids, Fixed solids		

10	Hot Air Oven	Total Suspended Solids, Total Dissolved Solids		
11	pH meter	рН		
12	Conductivity meter	Conductivity		
13	Turbidity Meter	Turbidity		
14	Bacteriological Incubator	Total coli form and fecal coli form		
15	Autoclave	sterilization		
16	Microscope	Bacteriological colony count		
17	Magnetic stirrer	Stirring purpose		
18	Vacuum filtration unit	Rapid filtration		
19	Water Bath	Boiling and evaporation purpose		
20	Cadmium reduction column	Nitrate		
21	Fluoride distillation unit	Fluoride		
22	Kjeldal flask	Ammonia and Organic Nitrogen		
23	Hot Plate	Digestion		
24	Pizometer	Water level monitoring		
25	Aquarium	Bio assay test		

ANNEXURE-XIII ORGANIZATION STRUCTURE Joda West Iron and Manganese Mine, M/S TATA STEEL LIMITED

