

To, The Member Secretary Jharkhand State Pollution Control Board TA Building, HEC Complex, Dhurwa, Ranchi – 834004 Jharkhand

MD/ENV/112/ 125/18 20th June 2018

Subject: Submission of annual report of Bio-medical waste in prescribed format (Form-IV) of TATA Steel Hospital, Noamundi, for a period of one year (1st Jan. 2017 to 31st Dec. 2017), as per Bio-medical Waste Management Rule 2016.

Ref: 1. Bio-medical Waste authorization no. JSPCB/HO/RNC/BMW-1355118/2017/28, dated 30th Aug. 2017, valid till 24.10.2021.

 Consent to Operate (CTO) no. JSPCB/HO/RNC/CTO-1619551/2017/1284, dated 25th Sept. 2017, valid till 24.10.2021.

Dear Sir.

Kindly find attached the annual report of Bio-medical Waste in a prescribed format (Form – IV) as per Bio-medical Waste Management Rules, 2016 for a period of January 2017 to December 2017 of TATA Steel Hospital, Noamundi, Babuline Campus, District East Singhbhum, Jharkhand along with required documents.

Also, kindly find attached the compliance of Consent to Operate (CTO) and Bio-medical Waste Authorization of TATA Steel Hospital, Noamundi as on date for your kind information.

Kindly acknowledge the same.

Thanking you,

Yours sincerely,

f: TATA Steel Limited

Sr. Manager (Environment), OMQ

Enclosed:

- Form-IV (Annual Report), Form-1 (Accident Report), Bio-medical Waste Details, Immunization Details, Training Details, Hospital Registration Certificate with Govt. of Jharkhand.
- 2. Compliance of Consent to Operate (CTO) & Bio-medical Waste Authorization as on date.
- Environmental Monitoring Report of Incinerator, STP & ETP of TATA Steel Hospital, Noamundi.

Copy to:

Regional Officer, Jharkhand State Pollution Control Board, Jamshedpur.

TATA STEEL LIMITED

Mines Division Noamundi 833 217 India
Tel 91 9234301340 Fax 91 6596 290737
Registered Office Bombay House 24 Homi Mody Street Fort Mumbai 400 001 India
Tel 91 22 66658282 Fax 91 22 66657724
Corporate Identity Number L27100MH1907PLC000260 Website www.tatasteel.com

Form – IV (See rule 13) ANNUAL REPORT

[To be submitted to prescribed authority on before 30th June every year for the period from **January to December** of the preceding year, by the occupier of health care facility (HCF) or common bio-medical waste treatment facility (CBWTF)]

SI. No	Particulars		
1.	Particulars of the Occupier	į	TATA Steel Hospital, Noamundi Health Care Facility
	(i) Name of the authorised person (occupier or operator of facility)	:	Dr. Dhirendra Kumar, Chief (Medical Officer)
	(ii) Name of HCF or CBMWTF	:	TATA Steel Hospital, Noamundi,
	(iii) Address for correspondence	:	Babu Line Campus, Noamundi
	(iv) Address of Facility		District: West Singhbhum,
	(v) Tel. No, Fax. No	7	Pin: 833217, JHARKHAND
	(vi) E-mail ID	1	Phone:
	(vii) URL of Website		Fax No. :
	(viii) GPS coordinates of HFC or CBMWTF		E-mail: dhirendra.kumar2@tatasteel.com envgroup.noa@tatasteel.com Website: www.tatasteelindia.com GPS location: Lat - 22°08'49.5"N Lon - 85°29'38.1"E
	(ix) Ownership of HCF or CBMWTF	:	(State Government or private or Semi Govt or any others) By TATA Steel Ltd.
	(x) Status of Authorisation under the Bio- Medical Waste (Management and Handling)	•	Authorization No.: JSPCB/HO/RNC/BMW-1355118/2017/28, dated 30 th Aug., 2017 valid up to 24.10.2021.
	(xi) Status of Consent under Water Act and Air Act	3	Consent to Operate (CTO) No. JSPCB/HO/RNC/CTO-1619551/2017/1284, dated 25 th Sept., 2017 valid up to 24.10.2021
2.	Type of health Care Facility	:	No of Bodo: 75 (Soventy Five)
	(i) Bedded hospital	:	No. of Beds: 75 (Seventy-Five)
	(ii) Non-bedded hospital (Clinic or Blood Bank or Clinical Laboratory or Research Institute or Veterinary Hospital or any other)		The hospital is integrated with ICU, Blood Bank, Pathological Lab, X-Ray Room, Ultra Sound facility etc.
	(iii) License number and its date of expiry		Hospital is registered as per Clinical Establishment Act (Registration & Regulation) 2010 from Govt. of Jharkhand and subsequently applied for renewal. Registration no.:- JH/BB/1311/1988 (as attached).
3.	Details of CBMWTF	:	
	(i) Number healthcare facilities covered by CBMWTF	28	Not applicable
	(ii) No of beds covered by CBMWTF	•	
	(iii) Installed treatment and disposal capacity of CBMWTF:		Kg per day
	(iv) Quantity of biomedical waste treated or disposed by CBMWTF	***	Kg per day

SI. No	Particulars		
4.	Quantity of waste generated or disposed in Kg per annum (on monthly average basis)		Yellow Category : 1288 Kg Red Category : 949.5 Kg (including liquid chemical waste) White : 1929 Kg Blue : 644 Kg General Solid waste : 5.34 Tonnes
5.	Details of the Storage, treatment, transports	itio	
	(i) Details of the on-site storage facility		Size : Yellow category : Provision for Red Category : 48 hrs storage only Blue Category : Only Capacity : (cold storage or any other provision) Not available
	(ii) Details of the treatment or disposal facilities	•	Type of No. of Capacity Quantity treatment units Kg/day treated or disposed in kg/annum Incinerators 01 25kg/day 180 Plasma Pyrolysis Nil Autoclaves 01 25kg/day Microwave Nil Hydroclave Nil Shedder 01 10kg/day 150 Needle tip cutter or destroyer sharp 07 100 encapsulation or concrete pit Nil Deep burial pits: 01 as per standard Chemical Disinfection:- Thru Chemical Treatment Any other treatment. Equipment: 10 KLD Effluent Treatment Plant (ETP) & 10 KLD Sewage Treatment Plant (STP) installed and regularly been operated.
		:	Red Category (like plastic, glass etc.)
	authorized recycler after treatment in kg per annum.		Nil
	(iv) No of vehicles used for collection and transportation of biomedical waste		Nil. Since entire waste is been treated & incinerated in the premises. However, municipal solid waste (Food, plastic etc) is been collected & disposed by
	(v) Details of incineration ash and ETP sludge generated and disposed during the treatment of waste in kg per annum		O1 no. vehicle. Quantity Where disposed lincineration Ash 12kg As per standard ETP Sludge* Incinerated *Till date no ETP sludge is generated

\$I.	Particulars		
No	(vi) Name of the Common Bio-Medical Waste Treatment Facility Operator through which wastes are disposed of		Nil. Bio-medical waste is collected & disposed internally. The list of incinerator operators are attached in annexure.
	(vii) List of member HCF not handed over bio-medical waste.	:	
6.	Do you have bio-medical waste management committee? If yes, attach minutes of the meeting held during the reporting period.		At district level, a bio-medical waste management committee made, chaired by Hon. Dy. Commission, East Singhbhum. At local level an EHS committee made.
7.	Details trainings conducted on BMW (i) Number of training conducted on BMW Management. (ii) Number of personnel trained		06 (Six) nos
	(iii) Number of personnel trained at the time of induction		87 (Including Contractual). All (100%)
	(iv) Number of personnel not undergone any training so far		Nil (Zero), All paramedical staff & healthcare workers undergone for BMW training
	(v) Whether standard manual for training is available?		Yes
	(vi) Any other information		All healthcare workers under gone for immunization for Hepatitis B and Tetanus regularly.
8.	Details of the accident occurred during the year		Not any such. However, a NIL accident report is attached as annexure.
	(i) Number of Accidents occurred (ii) Number of the persons affected (iii) Remedial Action taken (Please attach		Nil Nil Nil
9.	details if any) Are you meeting the standards of air Pollution from the incinerator? How many times in last year could not met the standards?		Yes At all the times.
	Details of Continuous online emission monitoring system installed		Online emission monitoring facility is not installed. However, from recognized agency emission monitoring been done regularly. All the monitoring results are attached herewith in annexure.
10.	Liquid waste generated and emission methods in place. How many times you have not met the standards in a year?		 Yes, all liquid waste generated being pre-treated and neutralized for 1-2% sodium. Hypochlorite dosing. All the liquid waste after pre-treatment is been treated in effluent treatment plant. Integrated Effluent treatment plant of 10 KLD is installed and regularly been operated. All the waste water from hospital is been collected and connected to 10 KLD Sewage Treatment Plant in the area. The required standard is met always. All the monitoring results are attached herewith.

SI. No	Particulars		
11.	Is the disinfection method or sterilization meeting the log 4 standards? How many times you have not met the standards in a year?		All the times.
12.	Any other relevant information	:	(Air Pollution Control Devices attached with the Incinerator).
			The double chambered incinerator is installed as per standard.

Certified that the above report is for the period of one year from January -2017 to December - 2017

Name and signature of the Head of the Institution

Date: 19th June 2018

Place: TATA Steel Hospital, Noamundi

Dr. Dhirendra Kumar, Chief (Medical Officer) Chief Medical officer (Mines)

Tata Steel Hospital, Noamundi

Form – I [(See rule 4(o), 5(i) and 15 (2)]

ACCIDENT REPORTING

NIL REPORT

1.	Date and time of accident:	NIL.	Not any such
2.	Type of Accident:	NIL.	Not any such
3.	Sequence of events leading to accident:	NIL.	Not any such
4.	Has the authority been informed immediately:	NIL.	Not any such
5.	The type of waste involved in accident:	NIL.	Not any such
6.	Assessment of the effects of the accident on human health and the environment:	NIL.	Not any such
7.	Emergency measure taken Adequate emergency	measur	e taken to address any accident
8.	Steps taken to alleviate the effects of accidents:	NIL.	Not any such
9.	Steps taken to prevent the recurrence of such an ac	ccident:	Various measure taken
10.	Doses your facility has an Emergency Control Police	y? If yes	s give details:

Doses your facility has an Emergency Control Policy? If yes give details:

The hospital doesn't have any separate Emergency Control Policy. However, various

emergency measures such as fire detection devices, fire alarm, fire hydrants, fire extinguishers, separate storage of gas (LPG etc used in cooking), day-night 24 hrs ambulance service, all the wards / rooms are regularly being monitored by Sister In-charge and Medical Officer. The Hospital always have a well-qualified medical officer for 24hrs to address any eventuality. Apart from above the hospital is certified for ISO: 9001:2015, ISO:14001:2015 & OHSAS:18001:2007 integrated with other units.

Date: 19th June 2018

Signature...Dr. Dhirendra Kumar Chief Medical Officer (Mines) ·····

Tata Steel Hospital, Noar- di

Place: TATA Steel Hospital, Noamundi

Designation ... Chief (Medical Officer)

Note: As per Bio-medical Waste Management Rule 2016 this report is been made.

YEARLY REPORT OF BIO-MEDICAL WASTE TATA STEEL HOSPITAL, NOAMUNDI APRIL 2017 - TO MARCH 2018

MONTH	YELLOW	RED	BLUE	WHITE	LIQUID	GARBAGES
	(K.G)	(K.G)	(K.G)	(K.G)	(Galon)	(K.G)
APRIL (2017)	112	82.5	95	165	43500	422.5
MAY	100	72	05	144	39000	375
JUNE	128	96	64	192	49000	482.5
JULY	138	103.5	69	207	49500	522
AUGUST	128	96	64	192	49000	482.5
SEPTEMBER	138	103.5	69	207	49500	522
OCTOBER	112	82.5	99	165	43500	422.5
NOVEMBER	92	99	46	132	38000	346.5
DECEMBER	78	57	39	114	32000	294
JANUARY(2018)	98	61.5	43	123	37000	322.5
FEBRUARY	100	72	50	144	39000	375
MARCH	9/	57	38	144	34500	285
TOTAL						
K. G	1288	949.5	644	1929	206500	4852

Immunization Details of Health Care Workers & Others TATA Steel Hospital, Noamundi

	10 m	00177	
	hillia a		
	P-19 - 195		STALL BY
S-NA NAME			
On Dinech Karrier			
10. Chilliangin Behera	1		
03 Kiran Chells			
05. Sukder Marsondi			1
06 Amanth Reddy	1		~
07: Sudha Sandil	~	/	1
100 Krishna Kasua	1		1
09. Ramechurasi Tairty			
10. Seema Sandil	/		~
11. Kanchan Rout		/	1
12. Gousango Ch. Sitari			
13. Krishna Karah	/	1	
14. Satyader Karna	1	1	1
15. Vinek Kumas	V		1
16. Asti Kohar	~	~	~
17. Sameer Karua		/	-
18. Nisaj Guchhait			1
19. Silnika Munga			
			1
20. Sombori Terai	V		
21. Subhasi Topno	V		
22. Renu Guchhait			
23 Subni Guchhait	~	V	
24. Sunika Guchhait	1	1	1
25. Sufochana Guchhait	/		
26. Punam Bagti	V	1	1
27. Xutan Shashi Bisua	1	1	
28. Rocky Karua	1	-/	
29. Nith Behesa			
30. Rusy Swati Ains	1	-	
31. Maldheri Hembron	V _	~	1
32 Chumki Grushhait	1	V	1
	V	1	1
33. Amita Kanna	/	/	1
34. Puja Karna	1	1	1
- A			

The state of the s		14 15 15 15	-
		S. 100. T.	
	P. Land Ballo	and date	and duse
BINE NAME			
25 Gent Karna			
The Genet Karua		1	Vanis
25 Gent Karna 26 Pont Karna 21 Raj Kishor Karna		1	-
88. Kichan Das	~		1
40. Prakrika Karua 41. Vishim Karua		2	-
40. Analita Karua	~		-
41. Vishen Karya	1		
42. Witach Warra			
The state of the s	-	-	
48. Abhimanya Kasua.	/		
		A PRINCIPAL OF	A STREET
		THE PERSON NAMED IN	
		The Part of the Pa	721144
		77 17 17 17	THE RESIDENCE
			1
			The same of
			1000
		Marie Control	
	1250		
		A FIRST	
	- 11 - 11 - 1		-
	The state of the s	DIE ALL	-
			THE PERSON NAMED IN
	100000	S. Street St.	
THE RESERVE OF THE PARTY OF THE			-
And the second s		No. of Lot	
			T
THE RESERVE TO SHARE THE PARTY OF THE PARTY			
	-		

Bio-medical Waste Management (Storage & Disposal) Training for all Health Care Workers & Others

TATA Steel Hospital, Noamundi

Hospital Registration Certificate

Provisional registration No:2036800027

GOVERNMENT OF Juarkhand

1610 27/06/17

District Registering Authority PASHCHINI SINGH BHUM

CERTIFICATE OF PROVISIONAL REGISTRATION

This is to certify that Tota Steel Hospital, Notice located at Notation of bwned by BRP RAO has been granted provisional registration as a clinical establishment under Section 15 of The Clinical Establishments (Registration and Regulation) Act, 2010. The Clinical Establishment is registered for providing medical services as a Hospital Polyulatio, Psyclotherapy, Dental Clinic under Altophathy System of Medicine.

This Certificate is valid for a period of one year from the date of issue.

Pace. Pashchimi Singhunum Sad :: 19scre. 20/05/2017 Designation of the Island Author

Terms and Conditions of Feliastration*

- 1. The holder of this Centificate of Registration shall comply with all the provisions of Clinical Establishment Act (Registration and Regulation) 2010 and the Rules made there under:
- 2. The Certificate of Registration is not transferable. The Certificate of Registration shall be displayed in a port of the premises open to the public.
- 3. Any change of cwnership or change of category or change of management or on ceasing to function as a clinical establishment, the certificate of registration shall be surrendered to the authority and application for tresh registration submitted.

"redelinenal surese and operable out a visa suspend as by the appropriate registering visible rity.

cite titre viciniques ration, nents nece exchange activity and expendent asset the second expendence of the second expend

	· · · · · · · · · · · · · · · · · · ·

COMPLIANCE OF EMISSION & DISCHARGE CONSENT CONDITIONS

UNIT: TATA Steel Hospital, Noamundi

CONSENT ORDER NO.: JSPCB/HO/RNC/CTO-1619551/2017/1284

ISSUE DATE: 25.09.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

(A) General Conditions

1. That, the occupier shall maintain the national ambient air quality within the standard given below:

Sr. No.		Time Conce Weighted	12	centration in Ambient Air	
	Pollutant	Average	Industrial, Residential, Rural and Other Area	Ecologically Sensitive Area	
(1)	(2)	(3)	(4)	(5)	
1,	Sulphur Dioxide(SO ₂), µg/m ³	Annual 24 hrs.	50 80	20 80	
2.	Nitrogen Dioxide(NO ₂), μg/m ³	Annual 24 hrs	40 80	30 80	
3.	Particulate Matter (size less than 10 μm) or PM ₁₀ , μg/m ³	Annual 24 hrs	60 100	60 100	
4.	Particulate Matter (size less than 2.5 µm) or PM _{2.5} , µg/m ³ .	Annual 24 hrs	40 60	40 60	
5.	Ozone(O ₃), µg/m ³	8hrs. 1 hr.	100 180	100 180	
6.	Lead(Pb) μg/m³	Annual 24 hrs	0.50 1.0	0.50 1.0	
7.	Carbon Monoxide(CO) mg/m ³	8 hrs. 1 hr.	02 04	02 04	
8.	Ammonia (NH ₃) μg/m ³	Annual 24 hrs	100 400	100 400	
9.	Benzene (C ₆ H ₆) μg/m ³	Annual	05	05	
10.	Benzo(α)Pyrene(BaP)Particulate phase only ng/m³	Annual	01	01	
11.	Arsenic (As) ng/m³	Annual	06	06	
12.	Nickel (Ni) ng/m ³	Annual	20	20	

We are maintaining the national ambient air quality within the standard. All the results of ambient air quality are being submitted regularly to JSPCB on monthly basis. Complete environmental monitoring report of Hospital is attached as annexure.

Two numbers of continuous online ambient quality stations (CAAQMS) are also installed in the Noamundi mines area Various parameters such as PM₁₀, PM_{2.5}, SO_x, NO_x is being monitored for every 15 minutes and the data of same is continuously uploaded in Pollution Control Board server. The data is same is also been displayed using electronic display board in public domain.

CAAQMS station of Noamundi

2. That, the occupier shall maintain the emission quality and the quantity, as follows:

Sr. No.	Parameter	Standard
I.	Particulate Matter	100 mg/Nm ³

A doubled chamber incinerator is installed at TATA Steel Hospital Noamundi for treatment & disposal of bio-medical waste generated from hospital. All the results are attached.

Double chambered incinerator with 60m chimney

3. That, the occupier shall keep process effluent in close-circuit and the quality of effluent from other sources in conformity with the standard (s) and the discharge quantity as below: All the effluent generated is recycled in close-circuit to maintain zero discharge. An effluent treatment plant (ETP) of 10 KLD is been installed in Hospital. The effluent quality is

CONSENT ORDER NO.: JSPCB/HO/RNC/CTO-1619551/2017/1284

ISSUE DATE: 25.09.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

Sr. No.	Parameter	Standard
1,	Total Suspended Solids	100 mg/L
II.	BOD	30 mg/L
III.	COD	250 mg/L
IV.	Oil & Grease	10 mg/L
V.	Quantity of Discharge	

COMPLIANCE STATUS

maintained as per standard and effluent quality report is being submitted regularly.

10 KLD ETP at TATA Steel Hospital, Noamundi

4. That, the occupier shall dispose of solid waste as follows:

Sr. No.	Type of Waste	Mode of Disposal
I.	Hazardous Carbonaceous Wastes	In co-processing in high temp. furnaces or Kilns
II.	Hazardous non-Carbonaceous Wastes	In TSDF
III.	Non-carbonaceous non-hazardous solid wastes/ mine over burdan	As a substitute of soil or mineral

No Hazardous waste is generated from Hospital except ETP sludge. The same is been disposed / incinerated as per standard. All the biomedical waste is generated is disposed as per standard.

- That, the occupier shall keep D G Set(s) within the acoustic enclosure (s) and shall keep the height(s) of exhaust pipe(s) as per Central Pollution Control Board norms.
- 6. That, the occupier shall install and maintain Central Ground Water Board / State Ground Water Directorate approved system of rain water harvesting –cum-ground water recharge and submit the photographic view of the structures within a month.

Small DG sets of various capacities are provided in area for lighting purpose in the area. The height(s) of exhaustive pipe as per norms.

Noamundi hospital is an integrated part of Noamundi Mine. All the rain water harvesting ponds and ground water recharge structures have been constructed and rain water harvesting plan is been approved from Ground Water Directorate, Jharkhand, Ranchi vide letter no. GWD 317/Ranchi, dated 14th Jun, 2012.

RWH structure for augmentation in the area

At Noamundi area the various RWH structures in the form of Check Dams, Saucer ponds, Gabion Structures, Trenches and contour are made based on recommendation of Hon. Director, Ground Water Directorate,

CONSENT ORDER NO.: JSPCB/HO/RNC/CTO-1619551/2017/1284

ISSUE DATE: 25.09.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

Water Resources Dept. Jharkhand and available land in the area.

7. That, the occupier shall grow and maintain greenery in the periphery and other available spaces and shall continue enhancing its plant density and biodiversity.

We are continuously growing and maintaining the greenery in the periphery and other available spaces. Last year we have planted 10,478 nos. saplings to cover an additional area. Plantation is being carried out by native species on the inactive dump slopes. The tree density has been maintained as 5122 plants per ha.

8. That, the occupier shall submit environmental statement with supporting stoichiometric calculations analyses reports by 30th Sept. every year.

Environmental Statement is shall be submitted as per requirement before 30th of Sept. every year.

9. That, the occupier shall submit report(s) duly monitored and issued by an NABL accredited / ISO 9001:2008 and OHSAS 18001:2007 certified laboratory in compliance of sub-para (2), (3), and (5), of paragraph 3 of this CTO yearly at required periodicity.

Complied with. The monitoring report of various parameters from NABL accredited / ISO 9001:2008 and OHSAS 18001:2007 certified laboratory is monthly submitted. The same is been attached as annexure.

10. That, this CTO is valid subject to the validity of mining lease / Mining Plan / Ecofriendly / Environmental Clearance, if applicable. In case of no renewal of mining lease / mining Plan, this consent shall be treated as revoked automatically.

Complied. The unit has all regulatory clearances. The mine lease is valid till year 2030.

11. That, this CTO is issued from the environmental angle only and does not absolve the occupier from other statutory obligations prescribed under any other law or any other instrument in force. The sole and complete responsibility to comply with these conditions laid down in all other laws for the time being in force, rests with the industry / unit occupier.

Noted and being complied.

12. That, this CTO shall not in any way, adversely affect or jeopardize the legal proceeding, if any, instituted in the past or that could be, instituted against you by the State Board for violation of the provisions of the Act or the Rules made there under.

Noted and being complied.

CONSENT ORDER NO.: JSPCB/HO/RNC/CTO-1619551/2017/1284

ISSUE DATE: 25.09.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

13. That the occupier shall abide by the applicable provisions of the Water (Prevention & Control of Pollution) Act, 1974; the Water Prevention & Control of Pollution) Cess Act 1977; the Air (Prevention & Control of Pollution) Act 1981; and the Environment (Protection) Act, 1986 and rules there under.

Being complied with

(B) Specific Conditions

- This CTO will supersede the previous CTO issued vide ref. no. JSPCB/ HO/ RNC/ CTO – 1130746 /2017/ 562 dt. 12-5-2017.
- That, the occupier shall ensure treatment and disposal of liquid waste in accordance with Water (Prevention and Control of Pollution) Act, 1974.
- That, the occupier shall dispose off bio-medical waste in accordance with the provisions of respective Bio-medical waste management Rules, 2016 made under the relevant

Noted down

Being complied with. The liquid chemical waste generated from pathological, blood bank etc is pre-treated in neutralization pit. Followed by treatment in 10 KLD Effluent Treatment Plant & Sewage Treatment Plant.

All the bio-medical waste is dispose off as per Bio-medical Waste Management Rule 2016. Double chambered incinerator is installed and operated at Hospital along with 10 KLD Effluent Treatment Plant, plastic shredder autoclave, deep burial facility, ash pit etc.

Incinerator & autoclave at Hospital

Plastic shredder, ash disposal pit at Hospital

 That, the occupier shall dispose off solid waste other than bio-medical waste in accordance with

CONSENT ORDER NO.: JSPCB/HO/RNC/CTO-1619551/2017/1284

ISSUE DATE: 25.09.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

provisions of respective waste management rules made under the relevant laws and amended from time to time.

5. That, the occupier shall ensure segregation of liquid chemical waste at source and ensure pre-treatment of neutralization prior to mixing with other effluent generated from health care facilities.

- That, the occupier shall ensure separate treatment for bio-medical waste and municipal solid wastes.
- 7. That, the occupier shall submit Environmental Statement every year by 30th September.
- 8. That, the occupier shall submit applications for renewal of consent under section 25/26 of the Water (Prevention & Control of Pollution) Act, 1974 and under section 21 of the Air (Prevention & Control of Pollution) Act, 1981 again 120 days prior to the expiry of this consent i.e. 24.10.2021, with requisite fee and documents showing compliance of all the above conditions.

COMPLIANCE STATUS

The solid waste such as food waste generated from hospital is been disposed as per norms on daily basis.

The liquid chemical waste generated from pathological, blood bank etc is pre-treated in neutralization pit. Followed by treatment in 10 KLD Effluent Treatment Plant & effluent Treatment plant.

10 KLD ETP at TATA Steel Hospital, Noamundi

Being complied with.

Being complied with.

Application for renewal of consent under section 25/26 of the Water (Prevention & Control of Pollution) Act 1974 and under section 21 of the Air (Prevention & Control of Pollution) Act, 1981 shall be done 120 days prior to the expiry of this consent i.e. 24.10.2021.

Compliance of Bio-Medical Waste Authorization Conditions

UNIT: TATA Steel Hospital, Noamundi

Bio-Medical Waste Authorization NO.: JSPCB/HO/RNC/BMW-1355118/2017/28

ISSUE DATE: 30.08.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

(A) General Conditions

- 1. The authorization shall comply with the provisions of the Environment (Protection) Act, 1986 and the rules made there under.
- Being complied with. All the provisions of the Environment (Protection) Act, 1986 and the rules made there under shall be abided in true sense.
- 2. The authorization or its renewal shall be produced for inspection at the request of an officer authorized by the prescribed authority.
- Being complied with.
- 3. The person authorized shall not rent, lend, sell, transfer or otherwise transport the biomedical wastes without obtaining prior permission of the prescribed authority.
- Being complied with. The bio-medical waste authorization shall not be transferred without prior permission from prescribed authority in any case.
- 4. Any unauthorized change in personnel, equipment or working conditions as mentioned in the application by the person authorized shall constitute a breach of his authorization.
- Being complied with and shall be abided truly.
- It is the duty of the authorized person to take prior permission of the prescribed authority to close down the facility and such other terms and conditions may be stipulated by the prescribed authority.

Being complied with. Prior permission of the prescribed authority shall be taken before closing down of TATA Steel Hospital, Noamundi.

(B) Specific Conditions

- 6. That the occupier shall not mix bio-medical waste with general waste and shall under no circumstances, hand over untreated wastes to the municipality for disposal in land fill site.
- Noted down and strictly followed in unit. The Bio-medical waste at any case shall not be mixed with municipal waste and shall not be disposed with municipal waste in any landfill site of area.
- 7. That, the occupier shall segregate bio-medical wastes and collect in colored containers/bags at the point of generation as per the Rules and shall transport them in covered containers labeled with the symbols of bio-hazard & cytotoxicity.

Complied and strictly followed in unit. Different colored (Yellow, Red, Blue & White) container as per norms placed at various generation points (different wards, OPD, Pathology, Blood Bank, ICU etc) and all the waste is segregated at generation point and disposed in in-house

Bio-Medical Waste Authorization NO.: JSPCB/HO/RNC/BMW-1355118/2017/28

ISSUE DATE: 30.08.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

That, the occupier shall treat the segregated biomedical wastes in the manner prescribed under the Rules and shall ensure requisite treatment of segregated wastes at the individual or common facility, duly authorized by State Pollution Control Board, Jharkhand.

incinerator & ETP after pre-treatment (for solid & liquid bio-medical waste) as per norms.

The segregation of Bio-medical waste is made from generation point and shall be disposed as per norms. Due to absence of common facility; a double chamber incinerator has been installed at hospital along with autoclave, shredder and other various facilities for disposal of Biomedical Waste.

Double chambered incinerator & autoclave at Hospital

Plastic shredder, deep burial-ash disposal pit at Hospital

The liquid chemical waste generated from pathological, blood bank etc is pre-treated in neutralization pit. Followed by treatment in 10 KLD Effluent Treatment Plant.

10 KLD ETP at TATA Steel Hospital, Noamundi

Apart from above 10 KLD STP is also been installed

Bio-Medical Waste Authorization NO.: JSPCB/HO/RNC/BMW-1355118/2017/28

ISSUE DATE: 30.08.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

10 KLD STP connected to Hospital, Noamundi

- That, the authorized person shall treat the biomedical waste containing more than or equal to 50 PPM of mercury and shall dispose of it (them) as per the provisions of the Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2016.
- 10. The occupier of health care unit shall submit the statement related to spillage and collection of mercury during the period from January to December of previous year, along with the annual report latest by 30th June of every year.
- 11. The authorized person of the unit shall maintain records related to the generation, collection, receipt, storage, transportation, treatment, disposal and/or any form of handling of Bio-medical Waste and all records shall be subject to inspection and verification by the State Pollution Control Board, Jharkhand at any time.
- 12. That, the occupier shall upload online application for renewal of authorization 90 days prior to the date of expiry of this authorization under Rule 10 of the Bio-Medical Waste Rules, 2016 with CTO copy issued under the Air (Prevention and Control of Pollution) Act, 1981 and the Water (Prevention and Control of Pollution) Act, 1974 along with compliance of all the above conditions.

Being complied with. Currently no such waste been generated at Hospital.

Being complied with. Currently no such waste been generated/disposed from Hospital.

All the records of generation of Bio-medical waste are well maintained in Hospital. The summery sheet waste generated and disposed is attached herewith.

Being complied with. The Hospital shall apply renewal 90 days prior to the date of expiry of this authorization.

Bio-Medical Waste Authorization NO.: JSPCB/HO/RNC/BMW-1355118/2017/28

ISSUE DATE: 30.08.2017. Valid till 24.10.2021 COMPLIANCE PRIOD: 01.01.2017 – 31.12.2017

CONSENT CONDITIONS

COMPLIANCE STATUS

- 13. That, the occupier shall do pre-treat the laboratory waste, microbiological waste, blood samples and blood bags through disinfection or sterilization on-site the manner as prescribed by the World Health organization (WHO) of National AIDS Control Organization (NACO) guidelines and then send to the common bio- medical waste treatment facility for final disposal.
- 14. That, the occupier shall ensure segregation of liquid chemical waste at source and ensure pretreatment or neutralization prior to mixing with other effluent generated from health care facilities.
- 15. That, the occupier shall submit an annual report to the prescribed authority in Form-IV, on or before the 30th June of every year.
- 16. That, the occupier shall submit analysis report of ETP to the Board yearly.

Pre-treatment such as neutralization of contamination of waste by using 1-2% Hypochlorite dosing & autoclaving is practiced regularly before incineration of waste.

Complied with. Pre-treatment by using 1-2% Hypochlorite dosing of liquid waste is been done. All the liquid waste drains are connected to Effluent Treatment plant for final treatment after Hypochlorite dosing and finally discharged to 10 KLD Sewage Treatment Plant for final treatment.

Complied regularly. The annual report of last year submitted vide letter no. MD/CMO/256/103 on 5th May 2017.

Complied with. All the environmental monitoring results are attached as annexure.

(An Enviro Engineering Consulting Cell)

ef: VCSPL/17/R-304

ANALYSIS REPORT OF FLUE GAS

Date: 03: 02:20 17

I. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	19.01.2017 at 3.30 pm
A	General Information about Stack	-	
1	Stack Connected to	1:	Incinerator
2	Emission due to		Burning of H.S. Diesel
3	Material of Construction of stack	:	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
B	Physical Characteristics of Stack:		
1	Height of the stack from ground level	:	60m (approx)
2	Diameter of the stack at sampling point		0.30m
3	Height of the sampling point from GL		15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:		
1	Fuel Used	:	N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	52
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)	:	5.58
4	Quantity of gas flow (Nm3/hr.)	:	1223
5	Concentration of Carbon monoxide (%)		1.60
6	Concentration of Carbon dioxide (%)	:	2.4
7	Concentration of Nitrogen dioxide (PPM)	:	28.9 400
8	Concentration of Hydrocarbon as CH ₄ (ppm)	:	3.4
9	Concentration of particulate Matters (mg/Nm³)	:	43.7 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	•	Nil
F	Remarks	_	

For Visionte Services Pvt. Ltd.

Visiontek Consultancy Services Pvt.Ltd. (An Enviro Engineering Consulting Cell)

ISO 9001: 2008 OHSAS 18001:2007

Ref: XCSPL 171R-407

-			
Dal	e	 and burn	

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	16.02.2017 at 3.0 pm
A	General Information about Stack		
1	Stack Connected to	:	Incinerator
2	Emission due to		Burning of H.S. Diesel
3	Material of Construction of stack	:	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder		Yes
6	Generation capacity	:	N.A.
В	Physical Characteristics of Stack:	-	SES THE SECOND SECOND
1	Height of the stack from ground level		60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL		15.0m (approx)
4	Area of Stack		0.0707 m ²
С	Analysis / Characteristic of Stack:		
1	Fuel Used		N.A.
2	Fuel consumption		N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	50
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)		5.41
4	Quantity of gas flow (Nm³/hr.)		1193
5	Concentration of Carbon monoxide (%)		1.8
6	Concentration of Carbon dioxide (%)		2.5
7	Concentration of Nitrogen dioxide (PPM)		59.1 400
8	Concentration of Hydrocarbon as CH ₄ (ppm)		3.6
9	Concentration of particulate Matters (mg/Nm³)		46.1 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack		Nil
F	Remarks	*	32367

For Visiontek Cons ces Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

C. YLAPY 17-12-614

Date:04.04.3017

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	16.03.2017 at 11.0 am
A	General Information about Stack		
1	Stack Connected to		Incinerator
2	Emission due to	1:	Burning of H.S. Diesel
3	Material of Construction of stack		MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
B	Physical Characteristics of Stack:	-	_
1	Height of the stack from ground level	1 :	60m (approx)
2	Diameter of the stack at sampling point	 :	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:		
1	Fuel Used	:	N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	49
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)		5.42
4	Quantity of gas flow (Nm³/hr.)		1199
5	Concentration of Carbon monoxide (%)		1.5
6	Concentration of Carbon dioxide (%)		2.2
7	Concentration of Nitrogen dioxide (PPM)		35.6 400
8	Concentration of Hydrocarbon as CH ₄ (ppm)	:	3.24
9	Concentration of particulate Matters (mg/Nm³)		42.8 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	:	Nil
F	Remarks	-	

For Visiontek Consultation Services Pvt. Ltd.

ISO 14001:2004 ISO 9001: 2008

(An Enviro Engineering Consulting Cell)

ref: VUPHITHR-814

Date: 03:05-2014

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

1117645	Date of Sampling	:	20.04.2017 at 10.40an	1
A	General Information about Stack	+		
1	Stack Connected to	:	Iucinerator	
2	Emission due to	:	Burning of H.S. Diesel	
3	Material of Construction of stack	١.	MS	5 € 3
4	Shape of stack	1	Circular	
5	Whether stack is provided with permanent platform & ladder	1:	Yes	
6	Generation capacity	:	N.A.	
В	Physical Characteristics of Stack:			
1	Height of the stack from ground level	-	60m (approx)	
2	Diameter of the stack at sampling point		0.30m	
3	Height of the sampling point from GL	:	15.0m (approx)	
4	Area of Stack		0.0707 m ²	
C	Analysis / Characteristic of Stack:	<u>.</u>		
1	Fuel Used		N.A.	
2	Fuel consumption		N.A.	
D	Results of Sampling & Analysis of Gaseous Emission			CPCB Limit
1	Temperature of emission (°C)	:	48	Cred Limit
2	Barometric pressure (mm of Hg)	:	714	
3	Velocity of gas (m/sec.)		5.35	
4	Quantity of gas flow (Nm³/hr.)	:	1187	
5	Concentration of Carbon monoxide (%)		1.7	
6	Concentration of Carbon dioxide (%)		2.4	
7	Concentration of Nitrogen dioxide (PPM)		34.8	400
8	Concentration of Hydrocarbon as CH ₄ (ppm)		3.42	*00
9	Concentration of particulate Matters (mg/Nm³)	:	44.5	50
E	Pollution control Device			
	Details of pollution control			
	Device attached with the stack		Nil	
F	Remarks	•	THE PARTY OF THE P	

For Visiontek Consult Consult

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCSPL/17/R-946

Date: 03-06-2017

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	19.05.2017 at 10.20am
Α	General Information about Stack	1	
1	Stack Connected to	1:	Incinerator
2	Emission due to	1:	Burning of H.S. Diesel
3	Material of Construction of stack	1	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder		Yes
6	Generation capacity	:	N.A.
B	Physical Characteristics of Stack:		_
1	Height of the stack from ground level	:	60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:		
1	Fuel Used		N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	50
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)	:	5.32
4	Quantity of gas flow (Nm ³ /hr.)	:	1173
5	Concentration of Carbon monoxide (%)	:	1.8
6	Concentration of Carbon dioxide (%)	:	2.6
7	Concentration of Sulphur dioxide (mg/Nm³)	:	7.17
8	Concentration of Nitrogen dioxide (mg/Nm³)	:	77.49 400
9	Concentration of Hydrocarbon as CH ₄ (ppm)	:	3.34
10	Concentration of particulate Matters (mg/Nm³)	:	41.8 50
E	Pollution control Device	_	-
	Details of pollution control		
	Device attached with the stack	:	Nil
F	Remarks		

For Visiontel Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

Ref. VespL/17/18-1202

ANALYSIS REPORT OF FLUE GAS FOR JUNE-2017

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	1:	12.06.2017 at 10.30am
A	General Information about Stack		
1	Stack Connected to	1.	Incinerator
2	Emission due to	1:	Burning of H.S. Diesel
3	Material of Construction of stack	1:	MS
4	Shape of stack	1:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	١.	N.A.
B	Physical Characteristics of Stack:	Ė	200000
1	Height of the stack from ground level		
2	Diameter of the stack at sampling point		0.30m
3	Height of the sampling point from GL	;	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:	•	
1	Fuel Used	-	N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission	-	25000000
1	Temperature of emission (°C)	:	Analysis Results CPCB Limit
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)	:	5.05
4	Quantity of gas flow (Nm ³ /hr.)	:	1120
5	Concentration of Carbon monoxide (%)		1.6
6	Concentration of Carbon dioxide (%)	:	2.4
7	Concentration of Sulphur dioxide (mg/Nm³)		2.4
8	Concentration of Nitrogen dioxide (mg/Nm³)	•	35.1 400
9	Concentration of Hydrocarbon as CH ₄ (ppm)		3.14
10	Concentration of particulate Matters (mg/Nm³)		37.4 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack		Nil
F	Remarks	•	

For Visiontek Consulan

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008

Ref: VESPL117-1R-1366

Date: 67 08 -2015

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	1:	17.07.2017 at 10.00am
A	General Information about Stack		
1	Stack Connected to	:	Incinerator
2	Emission due to		Burning of H.S. Diesel
3	Material of Construction of stack	:	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
В	Physical Characteristics of Stack:	-	
1	Height of the stack from ground level		60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
С	Analysis / Characteristic of Stack:		
1	Fuel Used	:	N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	47
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)		5.38
4	Quantity of gas flow (Nm ³ /hr.)	:	1197
5	Concentration of Carbon monoxide (%)		1.2
6	Concentration of Carbon dioxide (%)	:	2.1
7	Concentration of Sulphur dioxide (mg/Nm³)	:	2.92
8	Concentration of Nitrogen dioxide (mg/Nm³)	:	27.2 400
9	Concentration of Hydrocarbon as CH ₄ (ppm)	:	2.92
10	Concentration of particulate Matters (mg/Nm³)	:	31.6 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	:	Nil
	The state of the s	1910	

For Visiontek Consultancy Services Pvt. Ltd.

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

(An Enviro Engineering Consulting Cell)

Ref: VCSP4171R-1645

Date: 06:09:2017

ANALYSIS REPORT OF FLUE GAS

I. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	03.08.2017 at 10.20am
A	General Information about Stack	_	
1	Stack Connected to	:	Incinerator
2	Emission due to	۱.	Burning of H.S. Diesel
3	Material of Construction of stack	:	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
В	Physical Characteristics of Stack:		
1	Height of the stack from ground level		60m (approx)
2	Diameter of the stack at sampling point		0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
С	Analysis / Characteristic of Stack:	Ė	
1	Fuel Used		N.A.
2	Fuel consumption		N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	48
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)		5.12
4	Quantity of gas flow (Nm ³ /hr.)	:	1136
5	Concentration of Carbon monoxide (%)	,	1.0
6	Concentration of Sulphur dioxide (mg/Nm³)	:	1.8
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	24.2 400
8	Concentration of particulate Matters (mg/Nm³)	:	27.2 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack		Nil
F	Remarks		

For Visionte Consultance Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: NESPL | 17/13-1906

Date: 05:10-2017

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	1:	20.09.2017 at 11.0am
A	General Information about Stack		
1	Stack Connected to		Incinerator
2	Emission due to	١:	Burning of H.S. Diesel
3	Material of Construction of stack	;	MS
4	Shape of stack	1:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
В	Physical Characteristics of Stack:		
1	Height of the stack from ground level	:	60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:		
1	Fuel Used		N.A.
2	Fuel consumption		N.A.
D	Results of Sampling & Analysis of Gaseous Emission		Analysis Results CPCB Limit
1	Temperature of emission (°C)		46
2	Barometric pressure (mm of Hg)		714
3	Velocity of gas (m/sec.)		5.31
4	Quantity of gas flow (Nm³/hr.)		1185
5	Concentration of Carbon monoxide (%)		1.2
6	Concentration of Sulphur dioxide (mg/Nm³)		1.6
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	22.8 400
8 .	Concentration of particulate Matters (mg/Nm³)	:	29.9 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	:	Nil
F	Remarks	-	

For Visiontek Consumoy Service Pvt. Ltd.

ISO 9001: 2008 OHSAS 18001:2007

(An Enviro Engineering Consulting Cell)

Ref: VCSPL/17/R-3047

Date: 04.11.201

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

_	Date of Sampling	1:	09.10.2017 at 11.45am
A	General Information about Stack	1.	
1	Stack Connected to	1,	Incinerator
2	Emission due to	1	Burning of H.S. Diesel
3	Material of Construction of stack	1:	1 2 40
4	Shape of stack	١.	Circular
5	Whether stack is provided with permanent platform & ladder	1:	
6	Generation capacity	:	
B	Physical Characteristics of Stack:		
1	Height of the stack from ground level	:	60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack		0.0707 m ²
C	Analysis / Characteristic of Stack;	•	
1	Fuel Used	•	
2	Fuel consumption		N.A. N.A.
D	Results of Sampling & Analysis of Gaseous Emission	·	
1	Temperature of emission (°C)	:	Analysis Results CPCB Limit
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)		5.37
4	Quantity of gas flow (Nm³/hr.)		1210
5	Concentration of Carbon monoxide (%)		1.4
6	Concentration of Sulphur dioxide (mg/Nm³)	•	.5.5.5
7	Concentration of Nitrogen dioxide (mg/Nm³)		20.2
8	Concentration of particulate Matters (mg/Nm³)	:	20.2 400 33.9 50
E	Pollution control Device		30
	Details of pollution control		
	Device attached with the stack		Nil
F	Remarks	٠	

For Visiontek vices Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008

Ref. Vesp1/17/R-3295

Date: 04-12-247

ANALYSIS REPORT OF FLUE GAS

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	:	22.11.2017 at 11.10am
A	General Information about Stack	-	-
1	Stack Connected to	:	Incinerator
2	Emission due to	:	Burning of H.S. Diesel
3	Material of Construction of stack	:	MS
4	Shape of stack	:	Circular
5	Whether stack is provided with permanent platform & ladder	:	Yes
6	Generation capacity	:	N.A.
В	Physical Characteristics of Stack:	-	
1	Height of the stack from ground level	:	60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL	:	15.0m (approx)
4	Area of Stack	:	0.0707 m ²
C	Analysis / Characteristic of Stack:		
1	Fuel Used	:	N.A.
2	Fuel consumption	:	N.A.
D	Results of Sampling & Analysis of Gaseous Emission	-	Analysis Results CPCB Limit
1	Temperature of emission (°C)	:	40
2	Barometric pressure (mm of Hg)	:	714
3	Velocity of gas (m/sec.)	:	5.6
4	Quantity of gas flow (Nm³/hr.)	:	1274
5	Concentration of Carbon monoxide (%)	1	1.2
6	Concentration of Sulphur dioxide (mg/Nm³)	:	1.4
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	23.6 400
8	Concentration of particulate Matters (mg/Nm³)	:	30.4 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	:	Nil
F	Remarks		THE RESERVE OF THE PARTY OF THE

For Visiontek Constituery Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Negpt/17/R-34-26

Date: 04 -01 - 2018

ANALYSIS REPORT OF FLUE GAS

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

	Date of Sampling	1:	14.12.2017 at 11.15am
A	General Information about Stack	1-	
1	Stack Connected to	1.	
2	Emission due to	١.	
3	Material of Construction of stack	1:	The state of the s
4	Shape of stack	١.	
5	Whether stack is provided with permanent platform & ladder	١.	333.3333
6	Generation capacity	:	
B	Physical Characteristics of Stack:		
1	Height of the stack from ground level	1:	60m (approx)
2	Diameter of the stack at sampling point	:	0.30m
3	Height of the sampling point from GL		15.0m (approx)
4	Area of Stack		0.0707 m ²
C	Analysis / Characteristic of Stack:	-	10.0, M
1	Fuel Used	-	· -
2	Fuel consumption	:	N.A. N.A.
D	Results of Sampling & Analysis of Gaseous Emission	-	
1	Temperature of emission (°C)	-	Analysis Results CPCB Limit
2	Barometric pressure (mm of Hg)	•	1 200
5.00			714
3	Velocity of gas (m/sec.)	:	5.73
4	Quantity of gas flow (Nm³/hr.)	:	1295
5	Concentration of Carbon monoxide (%)	:	1.4
6	Concentration of Sulphur dioxide (mg/Nm³)	:	1.3
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	21.2 400
8	Concentration of particulate Matters (mg/Nm³)	:	27.4 50
E	Pollution control Device		
	Details of pollution control		
	Device attached with the stack	•	Nil
F	Remarks	•	0.240

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14861:2464 ISO 9001:2464 OHSAS 18801:2607

Ref: VCSPL1 17/R-307

Date 03 6 2 2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JANUARY-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2 Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3 Date of sampling

23.01.2017

4. Date of analysis

24.01.2017 to 30.01.2017

5. Sample collected by

VCSPI. Representative in presence of TATA Representative

SI.	Parameters	No. of the last of		Standards (In land	Analysis Results				
0.	Parameters	Testing Methods	Linit	Surface water)	W-1	W-2	14-3	W-1	
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odoorles s as far as practicable	OS &: Pungent smell	CL/WO	Pungent small	ctetto	
2	Suspended Solids	APIJA 2540 D	mg/t	100	242	36	186	316	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	<0.50	<850	<850	<850	
4	pl I Value	APBA 45001F B	i	5.5-9.0	6.28	6.84	6.35	9.98	
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	20	20	20	- 20	
ħ	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.4	I ND	2.4	ND	
7	Total Residual Chloring	APITA 4500CL B	mg/l		ND	ND	ND	NE	
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₁ C	Tem .	50	52	ND	4.6	MD	
9	Total Kieldahl nitrogen (as NHa)	APHA-4500-N _{ep} C	Togot	100	10.7	to	131	1.2	
10	Free aremonia (as NH ₁)	APHA 4500-NH-F	mg/l	5	ND	ND	ND	70	
11	FK)D(3 days at 27 C (max)	APHA 5210 B	mgfi	30	140	2	120	10	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mp/I	250	380	36	290	40	
13	Arsenie as As	APRA 3114 B	mg/1	0.2	40.00f	<0.001	×0.000	~ (1) H(c)	
14	Mercury (lig)	APITA 3500 Hg	mg/l	0.01	108 02	<0.001	N0.001	10004	
5	Lead as Po(max)	APHA 3111 B. C	mg/I	0.1	<0.01	-00.01	<0.01	-0.01	
6	Cadmium as Cd (max)	APHA JI H B. C	mg/l	2	<0.001	<0.001	40 001	-00000	
17	Hexavalent Chromium as Cr **	APITA 3500Cr B	ng/l	1.0	<0)A5	< 0.05	<0.05	<0.05	
18	Total Chromaum (Cr)	APHA3500-Cr. B	nigif	2	<0.05	4105	<0.05	-0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/li	3	0.13	<30 05	011	- 0.05	
CU	Zine as Zn(max)	APHA 3111 B. C	mg/l	5	0.18	<0.05	0.14	-0.05	
21	Scienium (Se) (max)	APHA 3114 B	mg/l	0,05	<0.001	<0.001	-const	eta that	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.00t	N0.00T	100.00I	
12	Cyan-de as CN (max)	APHA 4500 CN-C,D	mel	0.2	ND	ND.	ND	ND	
24	Fluoride as F (max)	APITA 4500F- C	/ Ng/I	2	0.21	0.022	0.10	810.0	
25	Dissalved Phesphates (P)	APHA4506-P D	Figm.	5	0.84	0.14	6.7	0.05	
26	Sulphide (S)	APIIA 4500-5;-D	mgfi	2	<01	-0.1	<01	<0.1	
27	Phenolic Compounds as C.H.OH (max)	APIIA 5530 B, D	mgil	1	<6.001	<0.001	-90001	eng treat	
18	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	70% survival of fishes	survival of fishes	survival of tishes	survival of fights	
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.016	<0.005	0.012	10.005	
30	Iron as Fe (max)	APHA3500 Fe B	mg/l	3	0.74	0.26	6.7	0.24	
11	Vanadium (V)	APHA 3500-V	mg/l	0.2	*ID.001	-0.001	<0.001	10001	
32	Natrate Natrogen	APHA 4500-NO, E	med	10	46	12	42	11	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy

Consultancy Sees Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

OHSAS 18001:2007

Ref .: VCSP.41718-410

Date: 03:08:2014

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF FEBRUARY-2017

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling 16.02.2017

Date of analysis

17.02.2017 to 23.02.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.				Standards (In land		Analysis Results				
N o.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4		
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	09 & Pungent smell	CL/U/O	11 & Pungent smell	CL/ U/O		
2	Suspended Solids	APHA 2540 D	mg/l	100	306	32	256	40		
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	<850	<850	<850	<850		
4	pH Value	APHA 4500H* B	-	5.5-9.0	6.36	6.94	6,28	6.88		
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	21	21	21	21		
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	4.2	ND	2.2	ND		
7	Total Residual Chlorine	APHA 4500Cl, B	mg/i	1	ND	ND	ND	ND		
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₁ C	mg/l	50	5.6	ND	54	ND		
9	Total Kjeldahl nitrogen (as NHs)	APHA 4500-Ners C	mg/l	100	15.8	1.4	15.4	0.8		
10	Free ammonia (as NH ₁)	APHA 4500-NH ₁ F	mg/l	5	ND	ND	ND	ND		
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	130	6	128	- 8		
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	360	24	320	30		
13	Arsenic as As	APHA 3114 B	mg/l	0.2	< 0.001	<0.001	< 0.001	+:0.001		
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001	<:0.001	0 001		
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	< 0.01	<0.01	-00)	-0.01		
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	<0.001	- 0 001	-0 001		
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	• 0.05		
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	<0.05	-0.05	-0.05		
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.15	< 0.05	0.12	-0.05		
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.22	< 0.05	0.13	-0.05		
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	+0.001		
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	<0.001	<0.001	-0.001		
23	Cyanide as CN (max)	APHA 4500 CN- C,D	rgm	0.2	ND	ND	ND	ND		
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.24	0.018	0.18	0.015		
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.78	0.12	0.82	0.1		
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	-01	•01	-01		
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	< 0.001	<0.001	-0 001		
8	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	72% Survival of fishes	98% Survival of fishes	70% Survival of fishes	98° s Survival o		
9	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.02	< 0.005	0.014	- 0 005		
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.82	0.28	0.68	0.26		
31	Vansdium (V)	APHA 3500-V	mg/l	0,2	< 0.001	< 0.001	<0.001	-0.001		
32	Nitrate Nitrogen	APILA 4500-NO ₃ E	mg/l	10	49	13	3.8	1.2		

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consider es Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

1: YCSPL/17-18-617

Date: 04:04.2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MARCH-2017

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital;

STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

16.03.2017

Date of analysis

17.03.2017 to 23.03.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.			24. 207	Standards (In land		Analysis Results				
N o.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4		
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	07 & Pungent smell	CL/ U/O	08 & Pungent smell	CLUO		
2	Suspended Solids	APHA 2540 D	mg/l	100	264	24	228	20		
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	<850	<850	<850	<850		
4	pH Value	APHA 4500H* B	**	5,5-9.0	6,40	7.04	6.34	6.96		
5	Temperature	APHA 2550-B	•€	Shall not exceed 5°C above the receiving water temperature	21	21	21	21		
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.8	ND	2.8	ND		
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	1	ND	ND	ND	ND		
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	5.2	ND	5.8	ND		
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	14.9	1.6	16.8	12		
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/l	5	ND	ND	ND	ND		
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	140	8	100	6		
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	320	28	280	20		
13	Arsenic as As	APHA 3114 B	mg/l	0.2	< 0.001	< 0.001	< 0.001	-0.001		
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	< 0.001	< 0.001	- 0.001		
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	< 0.01	<0.01	<0.01	-0.01		
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	< 0.001	< 0.001	0.001		
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	-0.05		
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	< 0.05	<0.05	~0.05		
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.16	< 0.05	0.13	<0.05		
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.18	< 0.05	0.12	=0.05		
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	-0.001	-0.001		
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001	< 0.001	<0.001		
24	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND		
25	Fluoride as F (max) Dissolved Phosphates (P)	APHA 4500F- C	mg/l	2	0.26	0.02	0.19	0.016		
13	Dissolved Phosphales (P)	APHA4500-P D	mg/l	5	0.84	0.1	0.7	0.08		
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.1	<0.1	<0.1		
7	Phenolic Compounds as C _n H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001	<0.001	<0.001		
88	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	71% Survival of "fishes	98% Survival of fishes	72% Survival of fishes	98% Survival of fishes		
9	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.02	<0.005	0.014	=0.005		
0	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.76	0.25	0.6	0.24		
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	< 0.001	< 0.001	<0.001	-0.001		
12	Nitrate Nitrogen	APHA 4500-NO ₃ E	rag/l	10	3.8	1.1	3.2	0.8		

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiont

Prices Pvt. Ltd.

Dary Sales

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

(An Enviro Engineering Consulting Cell)

ter: YSPHITHR-BIT

Date: 03:05:2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD;

STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

13.04.2017

4. Date of analysis

14.04.2017 to 20.04.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	Parameters		257.0	Standards (In land		Analys	is Results	2000
0.	rarameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	06 & Pungent smell	CL/ U/O	06 & Pungent smell	CL/ U/O
2	Suspended Solids	APHA 2540 D	mg/l	100	242	20	196	24
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H" B	-	5.5-9.0	6.28	7.10	6.36	7.06
5	Temperature	АРНА 2550-В	°C	Shall not exceed 5°C above the receiving water temperature	28	28	28	28
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.2	ND	2.4	ND
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	4.8	ND	5.4	ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-N _{org} C	mg/l	100	12.2	1.8	13.6	1.6
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ ,F	mg/l	5	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	120	10	120	8
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	290	40	300	30
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	< 0.001	<0.001	<0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001	<0.001	<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	<0.01	<0.01
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	< 0.001	< 0.001	<0.001
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	<0.05	<0.05	< 0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.14	<0.05	0.12	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.16	<0.05	0.14	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001	<0.001	<0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/I	3	< 0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.24	0.024	0.21	0.03
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.74	0.12	0.68	0.1
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.1	<0.1	<0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	73% Survival of fishes	98% Survival of fishes	71% Survival of fishes	98% Survival of fishes
19	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	<0.005	<0.005	< 0.005	< 0.005
10	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.84	0.28	0.7	0.22
31	Vanadium (V)	APHA 3500-V	mg/l	0,2	<0.001	<0.001	<0.001	<0.001
12	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	3.4	1.0	3.6	1.2

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Control of The Port Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: 4=591/17/R-949

Date: 03:06:2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD;

STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

11.05.2017

4. Date of analysis

12.05.2017 to 18.05.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SI.		ISSN TO SECURITION OF THE PROPERTY OF THE PROP	44.57	Standards (In land		Analysis	Results	
N o.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	05 & Pungent smell	CL/ U/O	05 & Pungent smell	CL/ U/O
2	Suspended Solids	APHA 2540 D	mg/l	100	192	24	172	20
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H ⁺ B	••	5.5-9.0	6.34	7.20	6.48	7.10
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	30	30	30	30
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.5	ND	1.8	· ND
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	. ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	4.6	ND	4.8	ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Nerg C	mg/l	100	11.6	2.2	12.2	1.8
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/l	5	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	132	8	110	6
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/I	250	320	36	270	24
13	Arsenic as As	APHA 3114 B	mg/l	0.2	< 0.001	< 0.001	<0.001	< 0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	< 0.001	< 0.001	< 0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	< 0.01	<0.01
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	< 0.05	< 0.05	< 0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.12	<0.05	0.13	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.14	<0.05	0.18	< 0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	< 0.001	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0,2	ND	ND	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.2	0.018	0.22	0.028
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.62	<0.05	0.6	<0.05
26	Sulphide (S)	APHA 4500-\$2-D	mg/l	2	<0.1	<0,1	<0.1	<0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	73% Survival of fishes	98% Survival of fishes	71% Survival of fishes	98% Survival or fishes
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	< 0.005	< 0.005	< 0.005	< 0.005
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.84 =	0.28	0.7	0.22
31	Vanadium (V)	APHA 3500-V	mg/l	0,2	< 0.001	< 0.001	< 0.001	< 0.001
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	3.4	1.0	3.6	1.2

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultore For Visiontek Consultore Pvt. Ltd

JA 🔍

ISO 14001:2004 ISO 9001: 2008 OH5A5 10001:2007

(An Enviro Engineering Consulting Cell)

Ref: Vespe 1171 R-1206

Date: 04.07.2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JUNE-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

12.06.2017

Date of analysis

13.06.2017 to 19.06.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	Parameters	Testing Methods	Unit	Standards (In land		Analy	sis Results	
0.		resting internous	Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour Suspended Solids	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	09 & Pungent smell	CL/U/O	07 & Pungent smell	CL/ U/C
_	TAXABLE TO THE TAXABL	APHA 2540 D	mg/l	100	178	28	154	24
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H B		5.5-9.0	6.40	7.12	6.36	7.04
5	Temperature	APHA 2550-B	°C	Shall not exceed 5 C above the receiving water temperature	25	25	25	25
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	2.6	ND	ND	- 15
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1 1	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH _{3,} C	mg/l	50	3.9	ND	4.1	ND ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	10.3	2.1	11.4	2.4
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/l	5	ND	ND	ND	ND
_	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	120	10	98	8
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	290	32	248	26
14	Arsenic as As	APHA 3114 B	mg/l	0,2	< 0.001	<0.001	<0.001	<0.001
15	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001	<0.001	<0.001
16	Lead as Pb(max)	APHA 3111 B, C	mg/I	0.1	< 0.01	10.0>	<0.001	
-	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	<0.001	<0.001	<0.01
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05
9	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	< 0.05	<0.05	<0.05
-	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.09	<0.05	0.11	<0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.12	< 0.05	0.16	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001	<0.001	<0.001
2 3	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001	<0.001	<0.001
4	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND
5	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.14	0.016	0.18	0.022
3	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.52	<0.05	0.54	<0.05
6	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1			
7	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.1	<0.1	<0.1
8	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	76% Survival of fishes	98% Survival of fishes	<0.001 80% Survival of	98% Survival of
9	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	<0.005	<0.005	fishes <0.005	fishes
)	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.8	0.28	0.68	<0.005
1	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001		0.24
2	Nitrate Nitrogen :CL:Colourless, U/O:Unobie	APHA 4500-NO3 E	me/l	10	2.6	0.64	<0.001 3.4	<0.001

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. Vespe 117/R-1369

Date: 07.08.2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JULY-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital;

STPW-4: Outlet of STP 10 KLD Hospital;

3. Date of sampling

17.07.2017

4. Date of analysis

18.07.2017 to 24.07.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SL.				Standards (In land		Analys	is Results	
0.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	11 & Pungent smell	CL/ U/O	10 & Pungent smell	CL/ U/O
2	Suspended Solids	APHA 2540 D	mg/l	100	164	26	150	22
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sleve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H B	-	5.5-9.0	6.48	7.08	6.40	7.02
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	25	25	25	25
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	ND	ND	ND	ND
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	2.6	ND	2.8	ND
9	Total Kjeldahl nitrogén (as NH ₃)	APHA 4500-N _{erg} C	mg/l	100	6.8	1.3	7.5	1.6
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ ,F	mg/l	5	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	70	8	64	6
12	COD COD	APHA 5220-C	mg/l	250	220	20	190	18
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	< 0.001	<0.001	< 0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001	< 0.001	< 0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	< 0.01	< 0.01
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	< 0.001	< 0.001	< 0.001
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	< 0.05	< 0.05	< 0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.07	< 0.05	0.09	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.1	< 0.05	0.13	< 0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001	<0.001	< 0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	< 0.001	< 0.001	< 0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/I	2	0.12	0.014	0.13	0.02
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.46	<0.05	0.5	< 0.05
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/i	2	<0.1	<0.1	<0.1	<0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	. 1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	84% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	82% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	<0.005	<0.005	<0.005	< 0.005
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.72	0.21	0.6	0.18
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001	<otibio!< td=""><td>76-0-901</td></otibio!<>	76-0-901
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	1.8	0.6	/-28	Total .

Note:CL:Colourless, U/O:Unobjectionable, ND:Not Detected.

For Visiontek Consultand

Salvices Pv

ISO 9001: 2008 OHSAS 18001:2007

(An Enviro Engineering Consulting Cell)

Ref. VCSPL/17/R-1648

Date 06.09.2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF AUGUST-2017

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling 17.08.2017

4. Date of analysis 18.08.2017 to 24.08.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.					T	Analys	is Results	
N o.	Parameters	Testing Methods	Unit	Standards (In land Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	14 & Pungent smell	CL/ U/O	11 & Pungent smell	CL/ U/O
2	Suspended Solids	APHA 2540 D	mg/l	100	200	32	168	24
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H B	-	5.5-9.0	6.36	7.10	6.40	7.14
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	24	24	24	24
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	ND	ND	ND	ND
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	1	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	3.2	ND	3.1	ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	9.1	1.4	8.4	1.3
10	Free ammonia (as NH ₃)	APHA 4500-NH3,F	mg/l	5	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	78	6	60	5
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	180	24	160	20
13	Arsenic as As	APHA 3114 B	mg/l	0,2	< 0.001	< 0.001	<0.001	<0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	<0.001	<0.001	<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	<0.01	<0.01
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	< 0.001	<0.001	< 0.001
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	< 0.05	<0.05	< 0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.09	< 0.05	0.12	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.14	< 0.05	0.19	< 0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	< 0.001	< 0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	< 0.001	< 0.001	< 0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.13	0.024	0.14	0.03
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.5	< 0.05	0.56	<0.05
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.1	<0.1	<0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	. 1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	82% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	80% survival of fish after 96 hours in 100%	98% survival of fish after 90 hours in 100%
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.012	<0.005	effluent 0.018	effluent <0.005
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.78	0.24	0.018	0.22
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001	<0.001	<0.001
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	1.9	0.64	2.8	0.8

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Service es Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008

OHSAS 18001:2007

ref: VCSPL/17/B-1909

Date: 05-10-2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF SEP-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD;

STPW-3: Inlet of STP 10 KLD Hospital;

STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

20.09.2017

Date of analysis

21.09.2017 to 27.09.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	Parameters	77		Standards (In land		Analy	sis Results	
0.	Tarameters	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	06 & Pungent smell	CL/ U/O	05 & Pungent smell	CL/ U/0
2	Suspended Solids	APHA 2540 D	mg/l	100	208	24	184	26
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	< 850	< 850
4	pH Value	APHA 4500H ⁺ B	-	5.5-9.0	6.30	7.14	6.24	7.18
5	Temperature	АРНА 2550-В	°C	Shall not exceed 5 C above the receiving water temperature	23	23	23	. 23
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	ND	ND	- ND	MD
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	i	ND	ND	ND	ND ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH _{3.} C	mg/l	50	3.6	ND	3.4	ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Novg C	mg/l	100	9.8	1.6	9.2	1.5
10	Free ammonia (as NH ₁)	APHA 4500-NH _{3.} F	mg/l	5	ND	ND	ND	
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	72	8	54	ND
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	172	24	154	30
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	<0.001	40.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001	<0.001	<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.001	<0.001	<0.001
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001	<0.01	< 0.01
17	Hexavaleni Chromium as Cr ^{*6}	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.001	<0.001
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	<0.05	<0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.10	<0.05	0.11	<0.05
20	Zine as Zn(max)	APHA 3111 B, C	mg/l	5	0.12	<0.05	0.16	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	<0.001	<0.05
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND ·	ND	<0.001
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.12	0.022		ND
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.46	<0.05	0.16	0.024
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/I	2	<0.1	<0.1	<0.1	<0.05
27	Phenolic Compounds as CoHsOH (max)	APHA 5530 B, D	mg/l	- 1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	84% survival of fish after 96 hours in 100%	98% survival of fish after 96 hours in 100%	86% survival of fish after 96 hours in 100%	98% survival of fish after 96 hours in 100%
29	Manganese (Mn)	APHA 3500-Mn, B			effluent	effluent	effluent	effluent
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	2	< 0.005	<0.005	< 0.005	< 0.005
1	Vanadium (V)	APHA 3500-V	mg/l	3	0.76	0.25	0.72	0.23
2	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	0.2	<0.001	<0.001	< 0.001	< 0.001
_	:CL:Colourless, U/O:Unobje	74 71A 4300-NO3 B	mg/l	10	2.1	0.54	2.5	0.72

Note:CL:Colourless, U/O:Unobjectionable, ND:Not Detected.

For Visiontek Consultant

Lite

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

(An Enviro Engineering Consulting Cell)

Ref. VCSPL/17/R-3050

Date: 04 11 2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF OCT-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD;

STPW-2: Outlet of STP 50 KLD;

STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

Date of sampling

09.10.2017

Date of analysis

10.10.2017 to 16.10.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

N	Parameters	Testing Methods	Unit	Standards (In land		Anal	ysis Results	
0.			Unit	Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour Suspended Solids	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	08 & Pungent smell	CL/ U/O	06 & Pungent smell	CL/U/C
3		APHA 2540 D	mg/l	100	172	20	150	16
4	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	<850	<850	<850	<850
_	pH Value	APHA 4500H B		5.5-9.0	6.36	7.20	6.38	7.12
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	23	23	23	23
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	1.4	ND		
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	1	ND	ND_	1.3	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH _{3.} C	mg/l	50	3.2	ND	ND	ND
9	Total Kjeldahl nitrogen (as NH ₁)	APHA 4500-Norg C	mg/I	100	9.2	ND 1,4	8.6	1.2
10	Free ammonia (as NH ₃)	APHA 4500-NH3,F	mg/l	5	ND	ND	0.000	The second second
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	52	6	ND	ND
12	COD Chemical Oxygen Demand as	APHA 5220-C	mg/l	250	148	18	132	21
13	Arsenic as As	APHA 3114 B	mg/l	0,2	< 0.001	< 0.001	<0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001		<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.001	<0.001	<0.001
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001	<0.01	<0.01
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.001	<0.001
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	<0.05	<0.05	1100000
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.11	<0.05	0.08	<0.05
	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.18	<0.05		<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	<0.001	0.16	< 0.05
2	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0,2	ND	ND	<0.001	<0.001
4	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.11	0.020	0.12	ND
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.64	<0.05	0.12	0.022
6	Sulphide (S)	APHA 4500-S ₂ -D	mg/I	2	<0.1	<0.1	<0.1	<0.05
7	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	. 1	<0.001	<0.001	<0.001	<0.001
8	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	85% survival of fish after 96 hours in	98% survival of fish after 96 hours in	87% survival of fish after 96 hours in	98% survival of fish after 96 hours in
-					100% effluent	100%	100%	100%
9	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	< 0.005	<0.005	effluent	effluent
0	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.68	0.28	<0.005	<0.005
1	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001	0.78	0.24
2	Nitrate Nitrogen CL:Colourless, U/O:Unobies	APHA 4500-NO ₃ E	mg/l	10	2.4	0.82	<0.001 2.8	<0.001

Note:CL:Colourless, U/O:Unobjectionable, ND:Not Detected.

For Visiontek Consultancy Service

Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008

OHSAS 18001:2007

Ref. VespL1171K-3298

Date: 04-12-2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF NOV-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital; STPW-4: Outlet of STP 10 KLD Hospital.

3. Date of sampling

16.11.2017

4. Date of analysis

17.11.2017 to 23.11.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SI.				Standards (In land	Analysis Results				
N o.	Parameters Testing Methods	Testing Methods	Unit	Surface water)	W-1	W-2	W-3	W-4	
1	Çolour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colouriess/Odouries s as far as practicable	06 & Pungent smell	CL/ V/O	04 & Pungent smell	CL/ U/O	
2	Suspended Solids	APHA 2540 D	mg/l	100	150	18	112	14	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	<850	<850	<850	<850	
4	pH Value	APHA 4500H* B		5.5-9.0	6.46	7.14	6.38	7.05	
5	Temperature	АРНА 2550-В	°C	Shall not exceed 5°C above the receiving water temperature	20	20	20	20	
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	1.6	ND	1.4	ND	
7	Total Residual Chlorine	APHA 4500Cl, B	mg/i		ND	ND	ND	ND	
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ ,C	mg/t	50	3.5	ND	3.6	ND	
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	9.6	1.4	10.2	1.2	
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ ,F	mg/l	5	ND	ND	ND	ND	
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	64	7	52	6	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	166	21	148	24	
13	Arsenic as As	APHA 3114 B	mg/l	0,2	< 0.001	<0.001	< 0.001	< 0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001	< 0.001	< 0.001	
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	<0.01	<0.01	
16	Cedmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001	< 0.001	<0.001	
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	<0.05	<0.05	
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	<0.05	< 0.05	<0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.13	<0.05	0.12	<0.05	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.16	< 0.05	0.19	<0.05	
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0,05	<0.001	< 0.001	<0.001	<0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001	<0.001	<0.001	
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	ND	ND	
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.13	0.025	0.14	0.022	
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.58	<0.05	0.64	<0.05	
26	Sulphide (S)	APHA 4500-S₂-D	mg/l	2	<0.1	<0.1	<0.1	<0.1	
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	• 1	<0.001	<0.001	<0.001	<0.001	
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	72% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	74% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.008	<0.005	0.007	<0.005	
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.8	0.27	0.72	0.26	
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001	< 0.001	< 0.001	
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	2.8	0.88	2.6	0.84	
33	Faecal Coliform	APHA 9221 B	MPN/100 ml	Shall not be detectable in any 100 ml sample	92.0	<1.8	86.0	<1.8	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consumpty Service

et Ltd.

(An Enviro Engineering Consulting Cell)

O 9001 : 2008

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: VCSPL/17/R. 24-29

Date: 04.01.2018

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF DEC-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: Inlet of STP 50 KLD; STPW-2: Outlet of STP 50 KLD; STPW-3: Inlet of STP 10 KLD Hospital;

3. Date of sampling

STPW-4: Outlet of STP 10 KLD Hospital. 14.12.2017

4. Date of analysis

15.12.2017 to 21.12.2017

5. Sample collected by

VCSPL Representative in presence of TATA Representative

SL	Parameters	Testing Methods	Unit	Standards (In land		Analys	Analysis Results	
0.				Surface water)	W-1	W-2	W-3	W-4
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	08 & Pungent smell 184	CI/ U/O	07 & Pungent smell	CL/ U/C
2	Suspended Solids	APHA 2540 D	mg/l	100		24	147	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve		<850	<850	<850
4	pH Value	APHA 4500H B	-	5.5-9.0	6.24	7.06	6.28	7.14
5	Temperature	APHA 2550-B	•€	Shall not exceed 5 C above the receiving water temperature	20	20	20	20
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	2.1	ND	2.5	ND
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH3.C	mg/l	50	4.2	ND	3.8	ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-N _{ers} C	mg/I	100	11.5	1.2	10.8	0.9
10	Free ammonia (as NH ₃)	APHA 4500-NH _{3.} F	mg/l	5	ND	ND	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	84	10	80	10
12	COD Chemical Oxygen Demand as	APHA 5220-C	mg/l	250	220	36	192	30
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	<0.001	<0.001	<0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001	<0.001 <0.001 <0.001 <0.005 <0.05	<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01 <0.001 < 0.005	<0.001 <0.001 <0.005 <0.05		<0.001
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2				<0.001
17	Hexavalent Chromium as Cr *6	APHA 3500Cr B	mg/l	0.1				<0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2				<0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.16	<0.05	0.14	<0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.16	<0.05	0.19	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	< 0.001	< 0.001	<0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	< 0.001	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/I	0.2	ND	ND	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.14	0.03	0.16	0.028
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.62	< 0.05	0.68	<0.05
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.1	<0.1	<0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	• 1	<0.001	<0.001	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	68% survival of fish after 96 hours in 100%	98% survival of fish after 96 hours in 100%	70% survival of fish after 96 hours in 100%	98% survival of fish after 96 hours in 100%
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l.	2	effluent	effluent	effluent	effluent
10	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.012	<0.005	0.01	<0.005
31	Vanadium (V)	APHA 3500-V	mg/I	0.2	<0.001	0.28	0.96	0.32
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	-			<0.001	<0.001	<0.001
33	Faecal Coliform	APHA 4500-NO ₃ E mg/l 10 APHA 9221 B MPN/100 Shall not be detectable in any 100 ml sample		3.1 88.0	0.72 <1.8	72.0	0.68 <1.8	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Services P

ELtd.

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008 OHSAS 18001:2007

Ref: VESPL/17/18-1910

Date: 05-10-2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF SEP-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

Sampling Location

ETPW-1: Inlet of ETP 10 KLD;

ETPW-2: Outlet of ETP 10 KLD.

Date of sampling Date of analysis

20.09.2017

21.09.2017 to 27.09.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SL.	Parameters	Testing Methods	Unit	Standards (In land		sis Results
-		The State		Surface water)	W-1	W-2
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	07 & Pungent	CL/ U/O
	Suspended Solids	APHA 2540 D	mg/l	100	166	18
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850
4	pH Value	APHA 4500H* B	-	5.5-9.0	6.35	7.06
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	23	23
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	ND	ND
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	1	ND	· ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	2.7	· ND
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Nerg C	mg/l	100	8.4	1.2
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/l	5	ND	NUN
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	50	ND
12	COD COD	APHA 5220-C	mg/l	250	142	18
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	+0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.001
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.01
17	Hexavalent Chromium as Cr **	APHA 3500Cr B	mg/l	0.1	<0.05	<0.001
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	<0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.14	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.14	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	<0.05
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	<0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0,2	ND	<0.001
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.19	ND
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.64	0.028
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.05
27	Phenolic Compounds as CaHsOH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	87% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100%
9	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	<0.005	effluent
0	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.88	<0.005
11	Vanadium (V)	APHA 3500-V	mg/l	0,2	<0.001	0.28
2	Nitrate Nitrogen	APHA 4500-NO1 E	mg/l	10	3.1	< 0.001

For Visiontek Consultancy Services

(An Enviro Engineering Consulting Cell)

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref: VCRPL/14/R-3051

Date: 04:11-2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF OCT-2017

1. Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

ETPW-1: Inlet of ETP 10 KLD; ETPW-2: Outlet of ETP 10 KLD.

3. Date of sampling

26.10.2017

Date of sampling
 Date of analysis

27.10.2017 to 02.11.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	Parameters	Testing Methods		Standards (In land	Analysis Results		
0.	ratameters	I esting Methods	Unit	Surface water)	W-1	W-2	
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	04 & Pungent smell	CL/ U/O	
2	Suspended Solids	APHA 2540 D	mg/l	100	128	23	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	
4	pH Value	APHA 4500H ⁺ B	-	5.5-9.0	6.44	7.00	
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	23	23	
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	1.6	ND	
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	2.4	ND	
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	6.8	1.2	
10	Pree ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/l	5	ND	ND	
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	40	5	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	120	16	
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	< 0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	<0.001	
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001	
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	<0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.14	<0.05	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.22	<0.05	
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	<0.001	
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/I	0.2	ND	ND	
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.21	0.023	
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.68	< 0.05	
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	<0.1	<0.1	
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	-1	<0.001	<0.001	
18	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	86% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	
19	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	< 0.005	<0.005	
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.94	0.3	
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001	
12	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	3.6 /i.Ch	HSTU	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consultancy Serves Pvt. Ltd.

ISO 14001:2004 ISO 9001: 2008 OHSAS 18001:2007

Ref. NCSPL/17/R-3299

Date: 04-12-2017

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF NOV-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

ETPW-1: Inlet of ETP 10 KLD;

a. Cumping accumon

ETPW-2: Outlet of ETP 10 KLD.

3. Date of sampling

16.11.2017

Date of analysis

17.11.2017 to 23.11.2017

5. Sample collected by : VCSPL Representative in presence of TATA Representative

SI.			1229234011	Standards (In land	Analysis Results		
N o.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	03 & Pungent smell	CL/ U/O	
2	Suspended Solids	APHA 2540 D	mg/l	100	96	20	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850	
4	pH Value	APHA 4500H ⁺ B		5.5-9.0	6.40	7.06	
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	20	20	
6	Oil & Grease(max)	APHA 5520 B	mg/i	10	1.8	ND	
7	Total Residual Chlorine	APHA 4500Cl, B	mg/1	1	ND	ND ·	
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	2.8	ND	
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-N _{org} C	mg/l	100	7.6	1.1	
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ ,F	mg/l	5	ND	ND	
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	32	6	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	116	18	
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	< 0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	< 0.001	
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	< 0.001	
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.05	
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	<0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.16	< 0.05	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.25	< 0.05	
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	<0.001	
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	
24	Fluoride as F (max)	APHA 4500F- C	mg/i	2	0.22	0.026	
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.6	<0.05	
26	Sulphide (S)	APHA 4500-S2-D	mg/l	2	<0.1	<0.1	
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001	
28	Bio-assay test	APHA 8910-C	•	90% survival of fish after 96 hours in 100% effluent	87% survival of fish after 96 hours in 100% effluent	98% survival of fish after 96 hours in 100% effluent	
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.01	<0.005	
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.88	0.28	
31	Vanadium (V)	APHA 3500-V	mg/l	0,2	<0.001	<0.001	
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	3.8	0.96	
33	Faecal Coliform	APHA 9221 B	MPN/100 ml	Shall not be detectable in any 100 ml sample	66.0	<1.8	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Con

Pvt. Ltd.

ultancy Ser

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref .: Vesp1/17/K-3430

Date: 04-01-2018

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF DEC-2017

Name of Industry

Noamundi Iron Mines (M/s TATA Steel Limited)

2. Sampling Location

ETPW-1: Inlet of ETP 10 KLD; ETPW-2: Outlet of ETP 10 KLD.

3. Date of sampling

14.12.2017

4. Date of analysis

15.12.2017 to 21.12.2017

Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	Parameters	Tank - No. 0		Standards (in land	Analysis Results		
0.	Parameters	Testing Methods	Unit	Surface water)	W-1	W-2	
3	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourles s as far as practicable	04 & Pungent	CI/U/O	
2	Suspended Solids	APHA 2540 D	mg/l	100	135	28	
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	<850	
4	pH Value	APHA 4500H B	-	5.5-9.0	6.34	7.18	
5	Temperature	APHA 2550-B	° C	Shall not exceed 5°C above the receiving water temperature	20	20	
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	2.2	ND	
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	· ND	
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ C	mg/l	50	3.5	ND	
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-N _{eep} C	mg/l	100	9.6	0.82	
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	rng/l	5	ND	ND	
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	64	8	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	148	26	
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	<0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	<0.001	
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01	
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001	
17	Hexavalent Chromium as Cr +6	APHA 3500CrB	mg/l	0.1	<0.05	<0.05	
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	<0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	0.13	< 0.05	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.22	< 0.05	
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	< 0.001	
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.19	0.024	
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.56	< 0.05	
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/i	2	<0.1	<0.1	
27	Phenolic Compounds as CsHsOH (max)	APHA 5530 B, D	mg/I	1	<0.001	<0.001	
28	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	75% survival of fish after 96 hours in 100% effluent	98% survival o fish after 96 hours in 100% effluent	
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.014	<0.005	
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	1.12	0.36	
31	Vanadium (V)	APHA 3500-V	mg/I	0.2	<0.001	<0.001	
32	Nitrate Nitrogen	APHA 4500-NO, E	mg/l	10	4.1	0.84	
33	Faecal Coliform	АРНА 9221 B	MPN/100 ml	Shall not be detectable in any 100 ml sample	72.0	≤1.8 ≤1.8	

Note: CL: Colourless, U/O: Unobjectionable, ND: Not Detected.

For Visiontek Consult

St. Ltd