

TSM-CPP/MoEF&CC/TS-01/2025-02/188

May 19, 2025

The Director(s)

Ministry of Environment, Forest & Climate Change, Integrated Regional Office, A/3, Chandrasekharpur, Bhubaneswar-751023

Subject: Submission of half yearly EC compliance reports for expansion of existing 300MW TPP by installation of 185MW coal based TPP at M/s. Tata Steel Limited-TSM-CPP(formerly known as Angul Energy Limited), Odisha for the period from October' 2024 to March' 2025.

Reference: EC vide letter No. J-13012/78/2011-IA-II(T); dated: 12.02.2015 & its amendment dated: 25.09.2020.

Dear Sir,

With reference to the captioned subject and cited reference, we are herewith submitting six monthly compliance reports for the conditions stipulated in the Environmental Clearance for expansion of existing (2x150) 300MW TPP by installation of 185MW coal based TPP at M/s. Tata Steel Limited – TSM-CPP (formerly known as Angul Energy Limited), Odisha for the period from October' 2024 to March' 2025 along with monitoring reports for your kind perusal.

The soft copies of the aforesaid compliance report are also being sent through mail to roez.bsr-mef@nic.in for your kind information and necessary record please. Also copy of EC compliance is being uploaded on MoEF&CC web site on portal http://environmentalclearance.nic.in.

..Dt.....

BHUBANESWAR

Hope, the above are in line with the statutory requirements.

Thanking you

Yours faithfully,

For TSM-CPP

Rajesh Kumar Agarwal (Factory Manager, TSM-CPP)

Encl: As above

Copy to: 1. The Zonal Officer, Central Pollution Control Board, Southern Conclave Block, 502, 5th & 6th Floors, 1582 Rajdanga Main Road, Kolkata – 700107.

Ganthigadia Nuahata Banarpal Angul 759 128 Odisha India Tel 91 6762 352000

Registered Office Bombay House 24 Homi Mody Street Fort Mumbai 400 001 India Tel. 91 22 6665 7371 Fax 91 22 66657724

Corporate Identification Number L27100MH1907PLC000260 Website www.tatasteel.com

(Period from Oct' 2024 to March' 2025)

Compliance Status of Environment Clearance for expansion of existing (2x150) 300 MW TPP by installation of (165+20) 185 MW coal based TPP at Tata Steel Limited – TSM-CPP (formerly known as Angul Energy Limited), Ganthigadia District Angul, Odisha vide MOEF&CC File no.: J-13012/78/2011-I-A.II(T) dated 12.02.2015 and its amendment dated 04.08.2020,13.08.2020 and 25.09.2020.

SPECIFIC CONDITION

SL	STIPULATED CONDITIONS	COMPLIANCE STATUS
i	Vision document specifying prospective plan for the site shall be formulated and submitted to the RO of the Ministry within six months.	Vision, Mission and Environment Policy statements have submitted to the Regional Offices, MoEF&CC, BBSR along with the compliance report.
ii	Harnessing solar power within the premises of the plant particularly at available roof tops shall be carried out and status of implementation including actual generation of solar power shall be submitted along with half yearly monitoring report.	Feasibility study completed for installation of solar power plant.
iii	Sulphur and ash contents in the imported coal to be used in the project shall not exceed 0.3% and 6% respectively at any given time. In case of variation of coal quality at any point of time, fresh reference shall be made to the Ministry for suitable amendments to environment clearance condition wherever necessary.	Amendment in Environmental Clearance was obtained from MoEF&CC for change in coal source from imported to Indian coal on 25.09.2020. Presently domestic coal being used having sulphur content less than 0.5 %.
iv	A long term study of radioactivity and heavy metals contents in coal to be used shall be carried out through a reputed institute and results thereof analyzed every two years and reported along with monitoring reports. Thereafter mechanism for an in-built continuous monitoring for radioactivity and heavy metals in coal and fly ash (including bottom ash) shall be put in place.	Heavy metal contents in coal have been analyzed at CSIR-IMMT Bhubaneswar. Coal analysis report is attached as Annexure-I for reference.
V	A stack of 220 m height shall be provided with continuous online monitoring equipments for SO _x , NO _x , PM ₁₀ and PM _{2.5} . Exit velocity of flue gases shall not be less than 22 m/sec. Mercury emissions from stack shall also be monitored on periodic basis.	 A stack with a height of 220 meters has been constructed, equipped with continuous online monitoring systems for sulfur oxides (SOx), nitrogen oxides (NOx), and particulate matter (PM10 and PM2.5). The exit velocity of the flue gases is maintained at no less than 22 meters per second. An online mercury analyzer has been installed at one stack attached to 165 MW to monitor Mercury content in Flue gas.

(Period from Oct' 2024 to March' 2025)

vi	High efficiency ESPs shall be installed to	Manual monitoring of mercury emissions is also conducted periodically, with the analysis report attached as Manual monitoring of mercury emissions is also conducted periodically, with the analysis report for the period from Oct'24 to Mar'25 is attached as Annexure – II . • Electrostatic Precipitators (ESPs) have
	ensure that particulate emission does not exceed 50 mg/Nm3. Adequate dust extraction system such as cyclones/bag filters and water spraying system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	 been installed for each boiler to ensure emissions are below 50 mg/Nm³. Dust extraction systems and dust suppression measures are actively implemented at ash silos and coal handling areas. Wheel washing systems is in operation to prevent fugitive dust emissions during the movement of fly ash vehicles.
Vii	Adequate dust extraction system such as cyclones / bag filters and water spraying system in dusty areas such as in coal handling and ash handling points, transfer areas and other vulnerable dusty areas shall be provided.	 Dust Extraction Systems: Installation of a dust extraction system at both the Intermediate and Main ash silos. Dust Suppression Systems: Implementation of an effective dry fog dust suppression system and the installation of rain guns at junction houses across the entire coal handling route.
Viii	COC of at least 5.0 shall be adopted	The plant is being operated with COC more than 5.
ix	Monitoring of surface water quantity and quality shall also be regularly conducted, and records maintained. The monitoring data shall be submitted to the Ministry regularly. Further, monitoring points shall be located between the plant and drainage in the direction of the flow of ground water and records maintained. Monitoring for heavy metals in ground water shall also be undertaken and results/findings submitted along with half yearly monitoring report.	 Monitoring of influent, effluent, surface, and ground water quality is regularly conducted in our in-house NABL accredited environment laboratory at TSM, as well as through a third-party NABL accredited laboratory. The summarized data of water quality analysis for the period from Oct'24 to Mar'25 is enclosed as Annexure - III.
Х	A well-designed rainwater harvesting system shall be put in place within six months, which shall comprise of rainwater collection from the built up and open area in the plant premises and detailed records	Adequate number of rainwater harvesting ponds have been constructed to collect surface runoff water which is being used for plant applications.

(Period from Oct' 2024 to March' 2025)

	kept of the quantity of water harvested	
xi	every year and its use. No water bodies including natural drainage system in the area shall be disturbed due to activities associated with the setting up /	No natural water bodies/drainage system was disturbed due to setting up this project.
xii	operation of the power plant. Hydrogeology of the area shall be reviewed annually from an institute/organization of repute to assess impact of surface water and ground regime (especially around ash dyke). In case any deterioration is observed, specific mitigation measures shall be undertaken and report/data of water quality monitored regularly and maintained shall be submitted to the Regional Office of the Ministry.	There is no deterioration of groundwater level, and the quality has been observed from the last hydrogeology study. Hydrogeology studies are being carried out on a quarterly basis internally and thorough CSIR-IMMT. Last six-month ground water quality and water level report is attached as Annexure-IV .
xiii	Wastewater generated from the plant shall be treated before discharge to comply limits prescribed by the SPCB/CPCB.	Wastewater generated from the plant is treated in ETP#1, and the treated water is reused for DRI shell cooling, dust suppression, and green area development.
xiv	Additional soil for leveling of the proposed site shall be generated within the site (to the extent possible) so that natural drainage system of the area is protected and improved.	No additional soil required for leveling the site as project activity has been completed.
XV	Prior approval of the Ministry shall be obtained for Mine Void and abandoned stone quarry filling of fly ash based on the outcome of the pilot study for which permission was accorded to the existing units by the Ministry on 05.09.2013 subject to Hon'ble NGT's Order.	 Presently fly ash is not used for coal mine void filling. Fly ash is also being supplied to Nearby fly ash brick manufacturing units, free of cost at door delivery model, for maximum utilization of ash. Cement plants through bulker. Construction of national highways (NH-55 & NH 149). Balance ash if any is being utilized in reclamation of low-lying areas & abandoned stone quarries as per guidelines of CPCB/ OSPCB after grant of necessary consents. Details of Fly Ash Generation and Utilization report is attached as Annexure - IX
xvi	Fly ash shall be collected in dry form and storage facility (silos) shall be provided.	Ash is being collected in dry form in the ash silo.
L	age isismity (shoot) shall be provided:	J., J.,

(Period from Oct' 2024 to March' 2025)

	Unutilized fly ash shall be disposed off in the ash pond in the form of slurry. Mercury and other heavy metals (As, Cr, Pb etc) will be monitored in the bottom ash as also in the effluents emanating from the existing ash pond. No ash shall be disposed off in low lying areas.	 Four silos with a capacity of 1,000 MT each and two intermediate silos with a capacity of 250 MT each have been installed. Ash utilization is being ensured as per fly ash notification of MoEF&CC, Govt. of India. Leachate characteristics of ash are carried out at regular intervals. The latest analysis report is enclosed as Annexure -V.
xvii	Fugitive emission of fly ash (dry or wet) shall be controlled such that no agricultural or non-agricultural land is affected. Damage to any land shall be mitigated and suitable compensation provided in consultation with the local panchayat.	Fly ash is being stored in ash silo and supplied to actual user by maintaining minimum 15 % moisture content. Fly Ash is transported using covered trucks/ bulker/ to avoid any fugitive emission due to transportation.
xviii	Ash pond shall be lined up with HDPE/LDPE lining or any other suitable material impermeable media such that no leachate takes place at any point of time. Adequate safety measures shall also be implemented to protect the ash dyke from getting breached.	An interim ash pond is currently functioning to store fly ash for emergency scenarios. To prevent leaching, the pond has been lined with bentonite material. Additionally, adequate safety measures are already in place to protect the ash dyke from breaches.
xix	Green belt consisting of three tires of plantation of native species around plant and at least 50 m width shall be raised. Wherever 50 m width is not feasible a 20 m width shall be raised, and adequate justification shall be submitted to the Ministry. Tree density shall not be less than 2500 trees per ha with survival rate not less than 80%. Only native species shall be planted and the green belt development shall be expedited.	 Wherever feasible, greenery has been developed in and around the plant premises using mainly native plant species. The survival rate of plant species is about 80%. Plantation of saplings is done regularly based on availability of vacant areas.
XX	CSR schemes identified based on Public Hearing issues and need based assessment shall be implemented in consultation with the village panchayat and the District administration starting from the development of the project itself. As part of CSR, prior identification of local employable youth and eventual employment in the project after imparting relevant training shall be also undertaken. Company shall provide separate budget for	 The peripheral development is being carried out based on socio-economic survey of the area on need based assessment. Various socio-economic development programs covering education (Green school project in collaboration with TERI) Roads in the nearby villages, safe drinking water, sanitation, sports and health care etc. are undertaken in nearby villages as per the suggestions made in public hearing. The

(Period from Oct' 2024 to March' 2025)

	community development activities and income generating program.	above includes social engineering as well as infrastructure projects.
xxi	As committed, a minimum amount of Rs. 40.00 crore shall be earmarked for CSR activities for next five years. For proper and periodic monitoring of CSR activities, a CSR committee or a social audit committee or a suitable credible external agency shall be appointed. CSR activities shall also be evaluated by an independent external agency. This evaluation shall be both concurrent and final.	 Various CSR activities have been undertaken since the inception of the plant by providing facilities of sanitation, drinking water, education, health care, road and communication etc. Following the acquisition of the industry by Tata Steel Limited, there has been a significant increase in both the variety and expenditure related to CSR activities. Breakdown of CSR initiatives for the FY'25 is enclosed as Annexure-VI.
xxii	For proper and periodic monitoring of CSR activities, a CSR committee or a social audit committee or a suitable credible external agency shall be appointed. CSR activities shall also be evaluated by an independent external agency. This evaluation shall be both concurrent and final.	 As per the revised companies Act, 2013 and its amendment, CSR committee has been formed. Evaluation of each specific CSR intervention/activities is monitored & evaluated by the CSR Committee. The peripheral development is being carried out based on socio economic survey and need based assessment. Based on this, we have provided the facilities for sanitation, drinking water, education, health care, road and communication facilities etc. to the surrounding villages.
xxiii	An Environmental Cell comprising of at least one expert in environment science/ engineering, ecology, occupational health and social science, shall be created preferably at the project site itself and shall be headed by an officer of appropriate superiority and qualification. It shall be ensured that the Head of the Cell shall directly report to the Head of the Plant who would be accountable for implementation of environmental regulations and social impact improvement / mitigation measures.	

(Period from Oct' 2024 to March' 2025)

Λ	Conoral Conditions	
Α .	General Conditions:	OFDO (0) 1 () 51 : 1 5 :
ı	Space for FGD shall be provided for future installation as may be required.	 CFBC (Circulating Fluidized Bed Combustion) coal-fired boiler has been installed, and to control SO₂ emissions, lime is being fed along with the coal. Adequate space has been provided for the installation of a lime injection system, and a lime sizing plant is currently under construction to supply sized lime for the effective reduction of SO₂ emissions.
ii	The treated effluents conforming to the prescribed standards only shall be recirculated and re-used within the plant. Arrangements shall be made that effluents and storm water do not get mixed	 Wastewater is treated in ETP-1 and the treated effluents conforming to the prescribed limits are recycled and reused in dust suppression and green area irrigation. Rainwater collected from the plant area is being channelized through drains into a series of storage ponds (3 Nos. of lagoons are in operation).
iii	A sewage treatment plant shall be provided (as applicable) and the treated sewage shall be used for raising greenbelt /plantation.	A Sewage treatment plant of capacity 3000 KLD is in operation to treat domestic sewage, and treated water is being reused for ash conditioning.
iv	Adequate safety measures shall be provided in the plant area to check/minimize spontaneous fire in coal yard especially during summer season. Copy of these measures with full details along with location on plant layout shall be submitted to the Ministry as well as to the Regional Office of the Ministry.	 19 numbers of fire hydrants have been provided in the coal yard-1, 2 and coal shed to check / minimize spontaneous fire. 09 numbers of gun sprinklers have also been installed in the yards to keep the surface moist. The coal piles are leveled by scraping and compacted by rolling. In coal silos / bins, First in First out (FIFO) principle is applied to avoid spontaneous burning. Fire tenders are ready to put into service in case of emergency.
V	Storage facility for auxiliary liquid fuel such as LDO/HFO/LSHS shall be made in the plant area in consultation with the Department of Explosives, Nagpur. Sulphur content in the liquid fuel will not exceed 0.5%. Disaster Management Plan shall be prepared to meet any eventuality in case of	 LDO/HSD is stored in the plant area where the risk is minimum. There is a dyke around the storage tanks to contain LDO/HSD in case of any leakage. Onsite emergency plan has prepared to meet any eventuality in case of an accident taking place.

(Period from Oct' 2024 to March' 2025)

	an accident taking place due to storage of oil.	 As per specification of the supplier, the sulfur content in the fuel is less than 0.5 % by mass.
vi	First aid and sanitation arrangements shall be made for the drivers and other contract workers during construction phase.	 Adequate First aid and sanitation arrangements were made during the construction phase of the plant. Similar facilities are being maintained
		during operational phase for the workers and employees.
Vii	Noise level emanating from turbines shall be so controlled such that the noise in the work zone shall be limited to 85 dB(A) from the source. For people working in the high noised areas, requisite PPEs like ear plugs/ear muffs etc shall be provided. Workers engaged in noisy areas such as turbine area, air compressors etc shall be periodically examined to maintain audiometric records and for treatment for any hearing loss including shifting to nonnoisy/less noisy areas.	 Enclosures and silencers have been provided for primary air and secondary air fans of all four boilers. Necessary PPEs are being provided to all the workers working in noise prone areas and periodic examination is being conducted for the workers engaged in noise prone areas. Noise monitoring is carried out regularly at six locations in the work zone areas. The summary of noise monitoring report for the period from Oct'24 to Mar'25 is enclosed as Annexure – VII.
viii	Regular monitoring of ambient air ground level concentration of SO ₂ , NO _x , PM _{2.5} , PM ₁₀ and Hg shall be carried out in the impact zone and records maintained. If at any stage levels are found to exceed the prescribe limits, necessary control measures shall be provided immediately. The locations of the monitoring stations and frequency of monitoring shall be decided in consultation with SPCB. Periodic reports shall be submitted to the regional office of the Ministry. The data shall also be put on the website of the Company.	 5 Nos. of ambient air quality monitoring stations have set up in nearby villages for measuring the monthly ground level concentrations of PM₁₀, SO₂ and NOx in consultation with SPCB, Odisha. The summary of ambient air quality monitoring report for the period from Oct'24 to Mar'25 is enclosed as Annexure – VIII.
ix	Utilization of 100 % fly ash generated shall be made from 4 th year of operation. Status of implementation shall be reported to the Regional Office of the Ministry from time to time.	Presently 100 % utilization of fly ash is being achieved by supplying cement manufacturing units and supplying to bricks manufacturing units on a transport subsidy basis. Balance ash if any is being used in filling abandoned stone quarries, low lying areas,

(Period from Oct' 2024 to March' 2025)

		 The annual implementation report on fly ash generation and utilization is being submitted regularly to the Regional Office of the Ministry and SPCB Odisha. The last report was submitted vide letter no. TSM- CPP/SPCB/TS-06/2025-01/186 dated 29.04.2025 and the copy is enclosed as Annexure-IX.
Х	Provision shall be made for the housing of contractor workers (as applicable) within the site with all necessary infrastructure facilities such as fuel for cooking, mobile toilets, mobile STP, safe drinking water, medical health care, crèche etc.	Adequate arrangements for housing of construction workers were made during the construction phase of the plant.
xi	The project proponent shall advertise in at least two local newspapers widely circulated in the region around the project, one of which shall be in the vernacular language of the locality concerned within seven days from the date of this clearance letter, informing that the project has been accorded environment clearance and copies of the clearance letters are available with the SPCB/Committee and may also be seen at website of the Ministry of Environment and Forests at http://envfor.nic.in	 Advertisements were circulated in The Telegraph (English daily) dated 15.02.2015 and the Samaya (Oriya daily) dated 15.02.2015. A copy of the same was submitted to MoEF&CC vide letter no. BSL/MoEF/BS-02/2015-09 dated 21.02.2015.
xii	A copy of the clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad / Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the web site of the Company by the Proponent.	Copy of the environment clearance was submitted to the concerned village panchayat, Zila Parishad, District Industry Centre etc.
xiii	The proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of measured data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MoEF, the respective zonal office of CPCB and the SPCB. The criteria	 Status of compliance with the stipulated environment clearance conditions are uploaded and sent to the MoEF&CC, CPCB and SPCB. Results of online air quality monitoring are being displayed near the main gate.

(Period from Oct' 2024 to March' 2025)

	pollutant levels namely SPM, RSPM (PM ₁₀ and PM _{2.5}) SO ₂ , NO _x (ambient as well as stack emission) shall be displayed at a		
	convenient location near the main gate of the Company in the public domain.		
XiV	The environment statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned SPCB as prescribed under the Environment (Protection) Rules 1986, as amended subsequently, shall also be put on the website of the Company along with the status of compliance of environment clearance conditions and shall also be sent to the respective Regional Office of the Ministry by e-mail.	•	The environment statement for each financial year ending 31st March in Form-V is submitted regularly to the Regional Office of MoEF&CC, CPCB and SPCB, Odisha. The last Environment Statement was submitted in Form – V vide letter no. TSM-CPP/SPCB/TS-03/2024-13/160 dated 27.09.2024.
XV	The project proponent shall submit six monthly reports on the status of the implementation of the stipulated environmental safeguards to the Ministry of environment and Forests, its Regional Office, CPCB and SPCB. The project proponent shall upload the status of compliance of the environmental clearance conditions on their website and update the same periodically and simultaneously send the same by e-mail to the Regional office of MoEF.	•	Six monthly reports on the status of the implementation of the stipulated environmental safeguards are being submitted to the MoEF&CC, Regional Office, CPCB and SPCB, Odisha. Last compliance report has been submitted vide letter no. TSM-CPP/MoEF&CC/TS-01/2024-04/167 dated 27.11.2024
xvi	Regional office of the MoEF will monitor the implementation of the stipulated conditions. A complete set of documents including Environment Impact Assessment report and Environment Management Plan along with the additional information submitted from time to time shall be forwarded to the Regional Office for their use during monitoring. Project proponent will upload the compliance status in their website and update the same from time to time at least six monthly basis. Criteria pollutants levels including NOx (from stack and ambient air) shall be displayed at the main gate of the power plant.	•	All the required documents have already been submitted to the Regional Office and will be made available during inspection. Compliance status is uploaded on the website and updated every six months.

(Period from Oct' 2024 to March' 2025)

xvii	Separate funds shall be allocated for implementation of environmental protection measures along with item-wise break-up. These shall be included as part of the project cost. The funds earmarked for the environment protection measures shall not be diverted for other purposes and year-wise expenditure should be reported to the Ministry.	 measures are not diverted for any other activity. Year-wise expenditure is submitted alor with the annual environmental statement the Ministry. 	
xviii	The project authorities shall inform the Regional Office as well as the Ministry regarding the date of financial closure and final approval of the project by the project authorities and the dates of land development work and commissioning of plant.	165 MW TG was commissioned on 23 rd September 2015.	
xix	Full cooperation shall be extended to the Scientists / Officers from the Ministry / Regional Office / CPCB / SPCB who would be monitoring the compliance on environmental status.	Full cooperation is being extended to the Scientists/Officers from the Ministry / Regional Office / CPCB / SPCB who would be monitoring the compliance on environmental status.	
	Amendment Environment clear	ance of 185 MW power plant	
	File no.: J-13012/78/2011-I		
SN	Additional Condition	Compliance	
i	Increase in ash generation due to change in coal source from imported to domestic coal shall be utilised 100% as per the targets provided in the Fly ash Notification. Ash generation, utilisation, disposal along with the target achieved (percentage utilisation) annually shall be submitted in the compliance report. Mercury in the coal	 100% fly ash utilization is ensured as per fly ash notification of MoEF&CC, Govt. of India. Annual implementation report w.r.t. fly ash generation and utilization are being submitted periodically. The last report was submitted vide letter no. TSM-CPP/SPCB/TS-06/2025-01/186 dated 	
	to be analysed and submitted.	29.04.2025 and acknowledgement copy is enclosed as Annexure-IX . Trace element analysis of coal sample is enclosed as Annexure-I .	

(Period from Oct' 2024 to March' 2025)

iii	The emissions from the flue gases and chimney shall meet the standard of PM: 50 mg/Nm3, SO2: 600 mg/Nm3, NOx: 300 mg/Nm3, Hg: 0.03 mg/Nm3 as per the Ministry's Notification dated 07.12.2015. Emission reporting shall be submitted in the compliance report.	model, for maximum utilization of ash. Cement plants through rake & bulker. Construction of national highways. Balance ash if any is being used for reclamation of low-lying areas & abandoned stone quarries as per guidelines of CPCB/OSPCB after grant of necessary Consents. An interim ash pond is currently in operation to Store and manage ash in case of emergencies to ensure proper handling until final disposal can be arranged. Emissions from flue gases and the chimney are well within the norms as per the Ministry's Notification dated 07.12.2015, except for SO2 emissions. CFBC coal-fired boilers have been commissioned to control NOx emissions. progress. Lime is being fed along with coal to reduce SO2 emissions. A separate bunker for mixing fluxes (lime along with coal) has been provided to control SO2 emissions. To further improve the lime conveying and dosing system and enhance desulphurization ability, a separate lime injection system is currently being commissioned. An online mercury analyzer has been installed at CEMS-3, attached to Boiler No. 5 and 6. A report on NOx and SO2 emissions is enclosed as Annexure-X.
iv	The coal transportation shall be carried out by rail as far as possible. In case, the rail/conveyor belt infrastructure is not available, road transportation may be done with tarpaulin covered trucks. The coal transportation and the ash content in the coal are governed by the Ministry's Notification dated 21.05.2020.	Coal transportation is being carried out by both rail and road with covered rakes and trucks.

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

Council of Scientific & Industrial Research Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. JD/MMC/05/25

Date: 16.05.2025

Name & Address of the Party:

Tata Steel Ltd.

At-Narendrapur, P.O.-Kusupanga Via-Meramandali, Dist-Dhenkanal

Pin-759121, Odisha.

Your Ref. No.:

Work Order No.: 3000156889/A06, Date: 26.10.2023

Sample Details:

1. Indian Coal (01 No.) 2. Imported Coal (01 No.)

3. Iron Ore (01 No.) 4. Lime stone (01 No.)

Date of Receiving:

12.02.2025

Date(s) of Conducting Test:

03.03.2025

Date of Completion of Test:

28.04.2025

Method Adopted:

1. Proximate analysis of coal samples by classical methods.

Major and trace element analysis of Coal, Iron ore, lime stone and Dolomite samples through wet chemical route by gravimetric, AAS and ICP-OES techniques.

3. Coal samples were leached with distilled water at a solid: liquid ratio of 1:20 for Fluoride analysis using ISE.

Detail Report: Following data tables are enclosed:

Table-1. Proximate analysis of coal samples.

Table-2. Chemical composition analysis of coal samples.

Table-3. Trace element analysis of coal samples.

Table-4. Chemical composition analysis of Iron ore, Lime stone and Dolomite samples.

Table-5. Trace element analysis of Iron ore, Lime stone and Dolomite samples.

Pr. Technical Officer MMC Dept.

(Dr. B. Nayak) Chief Scientist PL & Head, MMCD

N.B.: The samples are not drawn by CSIR-IMMT. Liability, if any, for the institute arising in connection with the testing shall be subject to ceiling of amount received by the institute from the client. The report should not be interpreted in part.

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

Council of Scientific & Industrial Research Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. JD/MMC/05/25

Date: 16.05.2025

Table-1. Proximate analysis of coal samples.

Sample ID	Moisture (%)	Volatile Matter (%)	Ash (%)	Fixed Carbon (%)
Indian coal	1.97	25.46	45.16	27.41
Imported coal	2.30	24.06	11.48	62.16

Table-2. Chemical composition analysis of coal samples.

Sl. No. 1 2 3 4 5 6 7 8 9	Component	Concentration in Test Samples, %					
		Indian Coal	Imported Coal				
1	SiO ₂	24.56	5.24				
2	Al ₂ O ₃	. 14.49	3.46				
3	Fe ₂ O ₃	1.24	0.31				
4	TiO ₂	0.93	0.18				
5	MnO	0.008	0.01				
6	CaO	0.24	0.61				
7	MgO	0.06	. 0.07				
8	Na ₂ O	0.88	0.4				
9	K ₂ O	0.63	0.14				
10	P ₂ O ₅	0.10	0.10				
11	S/SO ₃	0.48/1.2	0.72/1.8				
12	LOI	54.24	87.16				

(Dr. B. Nayak) Chief Scientist

PL & Head, MMCD

(J. Das)
Pr. Technical Officer
MMC Dept.

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

Council of Scientific & Industrial Research Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. JD/MMC/05/25

Date: 16.05.2025

Table-3. Trace element analysis of coal samples

Sl. No.	Parameters	Trace	e element concentration	ons in test samples
		Unit	Indian coal	Imported coal
1	Pb	mg/kg	22.95	2.94
2	Cd	mg/kg	BDL	BDL
3	Си	mg/kg	49.0	16.7
4	Ni	mg/kg	52.83	23.87
5	Co	mg/kg	12.23	5.06
6	Cr	mg/kg	57.52	21.49
7	Zn	mg/kg	83.6	19.07
8	Ag	mg/kg	1.23	0.48
9	Sb	mg/kg	6.45	1.67
10	Mo	mg/kg	2.92	0.31
11	V.	mg/kg	56.55	19.82
12	Se	mg/kg	1.77	0.28
13	Ba	mg/kg	180.74	23.5
14	As	mg/kg	139.5	37.2
15	Hg	mg/kg	0.91	0.62
16	В	%	0.35	0.13
17.	F in water leaching (1:20) solutions.	mg/L	0.38	0.13

(Dr. B. Nayak) Chief Scientist PL & Head, MMCD (J. Das)
Pr. Technical Officer
MMC Dept.

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

Council of Scientific & Industrial Research Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. JD/MMC/05/25

Table-4. Chemical composition analysis of Iron ore and Lime stone samples.

Sl. No.	Component	Concentration i	n Test Samples, %	
		Iron Ore	Lime Stone	
1	SiO ₂	1.08	3.36	
2	Al ₂ O ₃	5.07	0.98	
3	Fe ₂ O ₃	86.14	0.14	
4	TiO ₂	0.43	0.03	
5	MnO	0.016	0.023	
6	CaO	0.09	43.35	
7	MgO	0.01	9.54	
8	Na ₂ O	1.26	0.86	
9	K ₂ O	0.12	0.27	
10	P ₂ O ₅	0.25	, 0.012	
11	S/SO ₃	0.052/0.13	0.064/0.16	
12	LOI	4.35	40.15	

Pr. Technical Officer MMC Dept.

Date: 16.05.2025

Chief Scientist PL & Head, MMCD

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

Council of Scientific & Industrial Research Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. JD/MMC/05/25

Date: 16.05.2025

Table-5. Trace element analysis of Iron ore and Lime stone samples.

SI. No.	Parameters	Trace eleme	nt concentrations	in test samples
	=	Unit	Iron Ore	Lime Stone
1	Pb	mg/kg	0.26	0.05
2	Cd	mg/kg	BDL	BDL
3	Cu	mg/kg	13.54	4.97
4	Ni	mg/kg	1.15	6.62
5	Co	mg/kg	5.75	4.07
6	Cr	mg/kg	93.1	12.25
7	Zn	mg/kg	31.94	15.76
8	Ag	mg/kg	0.42	0.80
9	Sb	mg/kg	0.18	0.07
10	Mo	mg/kg	BDL	BDL
11	V	mg/kg	69.5	3.83
12	Se	mg/kg	BDL	0.12
13	Ba	mg/kg	70.26	16.48
14	As	mg/kg	0.76	23.6
15	Hg	mg/kg	0.53	0.38
16	В	%	0.67	0.51

(Dr. B. Nayak) Chief Scientist

PL & Head, MMCD

(J. Das)
Pr. Technical Officer
MMC Dept.

Mitra S.K.Private Limited

Building No.D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass,Tal - Bhiwandi

Dist. Thane- 421302. **Tel.**: 0252 2672352.

Email: mumbailab@mitrask.com
Web : www.mitrask.com

TEST REPORT

Name & Address of the Customer:Report No.:C/2025/202Tata Steel Ltd.Date:02.05.25

NH-55, Narendrapur, Meramandli, Sample No. :MSK/BBSR/2025/302 Dhenkanal,Odisha-759129, India

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

1	Group	: Atmospheric Pollution
2	Description of sample (As declared by customer)	: Stack Emission
3	Sample Mark (if any, given by the customer)	: Stack Emission
4	Date of sampling	: 16.04.25 at 12:25 pm to 12:50 pm
5	Place of sampling	: TSM CPP Boiler-2
6	Environmental conditions during sampling	: Cold Chain Maintained
7	Sampling Drawn By	: Mr. Chinmaya Biswal
8	Sampling Plan & Procedures used	: USEPA
9	Location of performance of laboratory activities	: Laboratory Permanent Facility
10	Additions to, Deviation from the method (if any)	: No
A: G	ENERAL INFORMATION ABOUT STACK:	
1 S	Stack connected to	TSM CPP Boiler-2
2 E	Emission due to	Process Emission
3 N	Material of construction of Stack	MS
4 S	Shape of Stack	Rectangular
5 V	Whether Stack is provided with permanent platform	Yes
6 0	Capacity	NA
B: P	HYSICAL CHARACTERISTICS OF STACK:	
1 F	Height of Stack from ground level	120 m
2 [Diameter of Stack at sampling point	2.5 m x 2.5 m

ANALYSIS RESULT

D: RESULTS FOR SAMPLING & ANALYSIS OF GASEOUS EMISSION:	<u>Unit</u>	Result	<u>Method</u>
Mercury	mg/Nm3	BDL(DL:0.008)	USEPA Part-29

10 m

6.28 m2

2. Fuel consumption: NA

Reviewed By:

4 Area of Stack

1 Fuel used : NA

Authorized Signatory For Mitra S.K. Private Limited

Signature : Ahanta Ku Reuts

3 Height of the sampling point from ground level

C: ANALYSIS/CHARACTERSTIC OF STACK:

Signature Ahanta Le Rosts

Name : Mr. Ananta Kumar Rath Designation : Operation Manager Name : Mr. Ananta Kumar Rath Designation : Operation Manager

Mitra S.K.Private Limited

Building No.D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass,Tal - Bhiwandi

Dist. Thane- 421302. **Tel.** : 0252 2672352.

Email: mumbailab@mitrask.com
Web : www.mitrask.com

TEST REPORT

Name & Address of the Customer:Report No.:C/2025/203Tata Steel Ltd.Date:02.05.25

NH-55, Narendrapur, Meramandli, Sample No. :MSK/BBSR/2025/303 Dhenkanal,Odisha-759129, India

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

1	Group	: Atmospheric Pollution
2	Description of sample (As declared by customer)	: Stack Emission
3	Sample Mark (if any, given by the customer)	: Stack Emission
4	Date of sampling	: 16.04.25 at 04:10 pm to 04:35 pm
5	Place of sampling	: TSM CPP Boiler-4
6	Environmental conditions during sampling	: Cold Chain Maintained
7	Sampling Drawn By	: Mr. Chinmaya Biswal
8	Sampling Plan & Procedures used	: USEPA
9	Location of performance of laboratory activities	: Laboratory Permanent Facility
10	Additions to, Deviation from the method (if any)	: No
A: G :	ENERAL INFORMATION ABOUT STACK:	
1 S	tack connected to	TSM CPP Boiler-4
2 E	Emission due to	Process Emission
3 N	Material of construction of Stack	MS
4 S	hape of Stack	Rectangular
5 V	Whether Stack is provided with permanent platform	Yes
6 C	Capacity	NA
B : P	HYSICAL CHARACTERISTICS OF STACK:	
1 H	leight of Stack from ground level	120 m
2 [Diameter of Stack at sampling point	2.5 m x 2.5 m
3 H	leight of the sampling point from ground level	10 m
4 A	area of Stack	6.28 m2
C: A	NALYSIS/CHARACTERSTIC OF STACK:	

ANALYSIS RESULT

D: RESULTS FOR SAMPLING & ANALYSIS OF GASEOUS EMISSION:	<u>Unit</u>	Result	<u>Method</u>
Mercury	mg/Nm3	BDL(DL:0.008)	USEPA Part-29

2. Fuel consumption: NA

Reviewed By:

Fuel used : NA

Authorized Signatory For Mitra S.K. Private Limited

Signature : Akanta Ku Reves

Signature Ahanta Ke Rests

Name: Mr. Ananta Kumar RathName: Mr. Ananta Kumar RathDesignation: Operation Manager: Operation Manager

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016. West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Annexure-III

Summary of Surface Water Quality Analysis

(Period: From October 2024 to March 2025)

S. N	Parameter	Unit	Kishin	ıda Nala	Lingar	a Nala	Brahama	ani River
5. N	Parameter	Unit	U/S	D/S	U/S	D/S	U/S	D/S
1	pH Value	-	7.24-8.35	7.72-8.35	7.75-8.61	7.64-8.56	7.08-8.27	7.24-8.14
2	Colour	Hazen	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)
3	Temperature	Deg C	25-25.2	25-25.2	25-25.2	25-25.2	25-25.2	25-25.2
4	Total Suspended Solids	mg/l	18-31.2	2.6-28.3	3.2-14	4.1-13.1	3-20.2	8-20.3
5	Arsenic as As	mg/l	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005
6	BOD, 3days at 27°C	mg/l	2.1-2.5	3.2-4.6	2.6-5.3	3.2-4.6	3.2-8.3	2.4-5.8
7	Boron as B	mg/l	BDL(DL:0.25)	BDL(DL:0.25)	BDL(DL:0.25)	BDL(DL:0.25)	BDL(DL:0.25)	BDL(DL:0.25)
8	Cadmium as Cd	mg/l	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001
9	Calcium as Ca	mg/l	18.1-36	16.5-42	22.1-42.4	16.8-43	8-22	8-22
10	Chlorides as Cl	mg/l	8.6-45.26	9.7-45.26	11.1-116.9	13.2-116.9	4.8-21	11.31-19
11	COD	mg/l	7.9-8	12-19.6	3.4-7.6	7.8-9.8	3.2-8.3	9.8-14
12	Copper (as Cu)	mg/l	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)
13	Cyanide as CN	mg/l	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)
14	Fluoride as F-	mg/l	0.82-4.2	1.2-6	0.13-1.2	0.17-2.6	0.16-4.5	0.11-2.9

S. N	Parameter	Heit	Kishin	ıda Nala	Lingar	a Nala	Brahamani River		
5. N	Parameter	Unit	U/S D/S		U/S	D/S	U/S	D/S	
15	Hexa Chromium as Cr +6	mg/l	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	
16	Iron as Fe	mg/l	1.84-5.4	0.14-1.8	0.27-0.8	0.16-0.17	0.21-1.9	0.18-2.1	
17	Lead (as Pb)	mg/l	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	
18	Manganese (as Mn)	mg/l	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	
19	Mercury (as Hg)	mg/l	BDL(DL:0.000 2)	BDL(DL:0.0002)	BDL(DL:0.000 2)	BDL(DL:0.000 2)	BDL(DL:0.000 2)	BDL(DL:0.000 2)	
20	Nickel (as Ni)	mg/l	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	BDL(DL:0.01)	
21	O&G	mg/l	BDL(DL:1.4)	BDL(DL:1.4)	BDL(DL:1.4)	BDL(DL:1.4)	BDL(DL:1.4)	BDL(DL:1.4)	
22	Phenolic Comp	mg/l	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	BDL(DL:0.001)	
23	Phosphate as P	mg/l	0.32-0.34	0.26-0.28	0.16-0.21	0.19-0.23	0.12-0.28	0.24-0.32	
24	RFC	mg/l	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	
25	Selenium (as Se)	mg/l	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	BDL(DL:0.005)	
26	TKN	mg/l	BDL(DL:0.3)	BDL(DL:0.3)	BDL(DL:0.3)	BDL(DL:0.3)	BDL(DL:0.3)	BDL(DL:0.3)	
27	Zinc (as Zn)	mg/l	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	BDL(DL:0.02)	

Ground Water Quality Analysis Report of surrounding villages

February 2025

eniu	ary 2025										
	Location		Kharagprasad	Charadagadia	Sibpur	Kochilamad a	Galapada	Motonga	Narendrapu r	Khaliberena	Kharagprasa d
S.N.	Parameters	unit	GW-01	GW-02	GW- 03	GW-04	GW-05	GW-06	GW-07	GW-08	GW-9
1	рН	-	8.12	8.04	7.55	8.08	8.01	7.69	8.21	8.03	8.01
2	Odour	-	Agreeable	Agreeable	Agree able	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable	Agreeable
3	Colour	mg/l	BDL(DL:2.0)	BDL(DL:2.0)	BDL(D L:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)	BDL(DL:2.0)
4	Turbidity	N.T. U	BDL(DL:1.0)	BDL(DL:1.0)	BDL(D L:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)
5	Total Dissolved Solids (as TDS)	mg/l	848	841	888	860	876	946	792	780	758
6	Aluminium as Al	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
7	Anionic Surface-Active Agents as (MBAS)	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
8	Boron as B	mg/l	BDL(DL:0.5)	BDL(DL:0.5)	BDL(D L:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)
9	Calcium as Ca	mg/l	114	108	114	130	100	130	123	106	139
10	Chloride as Cl	mg/l	57	37	24	93	143	56	89	143	96
11	Copper as Cu	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
12	Fluoride as F	mg/l	1.7	1.9	2.6	3.1	3.8	4.2	1.3	1.4	1.9
13	Residual Free	mg/l	BDL(DL:0.1)	BDL(DL:0.1)	BDL(D	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)

	Location		Kharagprasad	Charadagadia	Sibpur	Kochilamad a	Galapada	Motonga	Narendrapu r	Khaliberena	Kharagprasa d
S.N.	Parameters	unit	GW-01	GW-02	GW- 03	GW-04	GW-05	GW-06	GW-07	GW-08	GW-9
	Chlorine				L:0.1)						
14	Iron as Fe	mg/l	BDL(DL:0.5)	BDL(DL:0.5)	BDL(D L:0.5)	BDL(DL:0.5)	BDL(DL:0.0 5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)	BDL(DL:0.5)
15	Magnesium as Mg	mg/l	28	29	25	25	29	40	29	22	14
16	Manganese as Mn	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
17	Mineral Oil	mg/l	BDL(DL:1.0)	BDL(DL:1.0)	BDL(D L:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)	BDL(DL:1.0)
18	Nitrate as NO3	mg/l	BDL(DL:0.2)	2.4	3.2	17.4	7.3	5.6	33.2	19	27.6
19	Phenolic Compounds as C6H5OH	mg/l	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0. 001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)
20	Selenium as Se	mg/l	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0. 005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)
21	Sulphate as SO4	mg/l	87	133	89	121	143	112	158	143	126
22	Total Alkalinity as CaCO3	mg/l	435	431	420	416	451	500	467	420	482
23	Total Hardness as CaCO3	mg/l	402	392	388	428	370	492	430	356	406
24	Zinc as Zn	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	1.06	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
25	Cadmium as Cd	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
26	Cyanide as CN	mg/l	BDL(DL:0.1)	BDL(DL:0.1)	BDL(D L:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)	BDL(DL:0.1)
27	Lead as Pb	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05)

	Location		Kharagprasad	Charadagadia	Sibpur	Kochilamad a	Galapada	Motonga	Narendrapu r	Khaliberena	Kharagprasa d
S.N.	Parameters	unit	GW-01	GW-02	GW- 03	GW-04	GW-05	GW-06	GW-07	GW-08	GW-9
)						
28	Mercury as Hg	mg/l	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0. 001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)	BDL (DL:0.001)
29	Nickel (as Ni)	mg/l	BDL(DL:0.05)	BDL(DL:0.05)	BDL(D L:0.05	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.0 5)	BDL(DL:0.05
30	Total Arsenic (as As)	mg/l	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0. 005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)	BDL (DL:0.005)
31	E. coli	/100ml	Not Detected	Detected	Not Detect ed	Not Detected	Not Detected	Detected	Not Detected	Not Detected	Not Detected

Note: BDL: Below Detectable Limit; DL: Detectable Limit, U/S: Upstream D/S: Downstream **Source:** Monitoring/ Analysis report of S.K. Mitra Private Limited and Environment Laboratory of TSM.

(AMBIENT AIR QUALITY REPORT)

(Period: From January 2024 to March 2025)

S. No	Location	PM 10 in μg/m3	PM2.5 in μg/m3
1	Motanga	71.98 -79.34	36.54 -40.08
2	Galpada	70.32 -76.24	33.42 -36.94
3	Nalachandrapur (Nalatangra)	68.22 -74	31.6-36.19
4	Narandrapur	68.91 -76.04	33.44 -37.65
5	Mangalpur	72.64 -76	35.4 8-37.85
6	Khaliberana	72-75.38	33.9-38.05
7	Kochilamara	70.04 -82.59	32.34 -42.56
8	Itapa	69.5-75.82	32.04 -37.56

----- End of Report -----

(A Govt. of India Autonomous Body)

Environmental Chemical Laboratory

Bhubaneswar, Odisha (An NABL Accredited Laboratory)

TEST REPORT

Issued to: Tata Steel Limited, Meramandali

Date: 16.12.2024

Test Report No.11/2024-001

Sample Condition: In Plastic Jar

Sample quantity: 2 Litre

Sampling Method: APHA1060B

Source of Sample :Kisinda UP & Down stream

Letter Reference:

Sample Collected on: 14.11.2024

Sample Analysed on: 15.11.2024

SI No	Characteristics	Test Method As Per APHA	Kisinda UP- stream	Kisinda down stream	Standard as per Class C-IS 2296/CPCB/SPCB
1 .	pH Value	APHA 4500H+ B	8.33	8.03	6.0-9.0
2	Colour	APHA 2120 B, C	15	20	300 (max)
3	Electrical Conductivity, μs/cm	APHA 2510 B	711	1004	
4	Total Dissolved Solids, mg/l	APHA 2540 C	448.0	692.0	1500 (max)
5.	Dissolved Oxygen, mg/l	APHA 2540 C	9.0	8.8	4 (min)
6	BOD (3) days at 27°C	АРНА 5210 В	5.4	3.4	3 (max)
7	Chloride, mg/l	APHA 4500Cl- B	35.0	126.0	600 (max)
8	Fluoride as F, mg/l	APHA 4500F- C	5.2	3.5	1.5 (max)
9	Sulphates (SO ₄), mg/l	APHA 4500 SO42- E	41.01	111.96	400 (max)
10	Nitrate as NO ₃ , mg/l	APH4500 NO3- E	10.2	17.7	50 (max)
11	Hexa Chromium as Cr +6, mg/l	APHA 3500Cr B	<0.01	<0.01	0.05
2	Cyanide as CN, mg/l	APHA 4500 CN-C,D	<0.03	<0.03	0.05 (max)
3	Copper as Cu, mg/l	APHA 3111 B,C	0.074	0.107	1 5 (2001)
4	Iron as Fe, mg/l	APHA 3500Fe, B	0.078	0.211	1.5 (max)
5	Cadmium as Cd , mg/l	APHA 3111 B,C	<0.003	<0.003	0.5 (max) 0.01 (max)

1of 2

Laboratory: Acharya Vihar, Bhubaneswar, Odisha-751013. Tel: 0674-2379236, Mobile: 9760387460. E-Mail: dir@immt.res.in.

NABL Accredited Lab/ISO/IEC 17025:2005.

En Control of Albertal & Sustainability Dept.
CSIR-institute of Minerals & Materials Technology
Bhubaneswar-751013, Odisha, INDIA

(A Govt. of India Autonomous Body)

Environmental Chemical Laboratory

Bhubaneswar, Odisha (An NABL Accredited Laboratory)

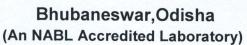
TEST REPORT

16	Selenium as Se, mg/l	APHA 3114 B	<0.01	<0.01	0.05 (max)
17	Arsenic as As, mg/l	APHA 3114 B	0.008	0.011	0.2 (max)
18	Lead as Pb(max), mg/l	APHA 3111 B,C	<0.01	<0.01	0.2 (max) · 0.1 (max)
19	Zinc as Zn(max), mg/l	APHA 3111 B,C	0.108	0.010	15 (max)
20	Sodium Absorption Ratio	By Calculation	10.28	10.81	
21	Total Coliform	APHA 9221 B	348	>542	5000
22	Fecal Coliform	APHA 9221 B	33	120	300
23	Manganese as Mn, mg/l		0.017	<0.01	0.1
24	Sodium as Na, mg/l		62.36	72.05	
25	Potassium as K, mg/l		2.11	5.89	
26	Nickel as Ni, mg/l		0.014	0.018	0.02
27	Chemical Oxygen Demand, mg/l		40.0	36.0	0.02
28	Free Ammonia , mg/l		<0.01	<0.01	0.5
29	Boron as B, mg/l		0.012	0.018	0.5

Authorized Signatory

Dr Arakshita Majhi

Senior Principal Scientist Scientist Odisha, INDIA


Phone - 0674-2379236

E mail I.D- arakshita@immt.res.in

(A Govt. of India Autonomous Body)

Environmental Chemical Laboratory

TEST REPORT

Issued to: Tata Steel Limited, Meramandali

Date: 16.12.2024

Test Report No.11/2024-002

Sample Condition: In Plastic Jar

Sample quantity: 2 Litre

Sampling Method: APHA1060B

Source of Sample :Lingra UP & Down stream

Letter Reference:

Sample Collected on: 14.11.2024

Sample Analysed on: 15.11.2024

SI No	Characteristics	Test Method As Per APHA	Lingra UP- stream	Lingra down stream	Standard as per Class C-IS 2296/CPCB/SPCB
1	pH Value	APHA 4500H+ B	8.36	7.91	6.0-9.0
2	Colour	APHA 2120 B, C	20	25	300 (max)
3	Electrical Conductivity, μs/cm	APHA 2510 B	499	598	
4	Total Dissolved Solids, mg/l	APHA 2540 C	309.0	360.0	1500 (max)
5	Dissolved Oxygen, mg/l	APHA 2540 C	9.9	8.6	4 (min)
6	BOD (3) days at 27°C	APHA 5210 B	6.9	3.0	3 (max)
7	Chloride, mg/l	APHA 4500CI- B	25.0	41.0	600 (max)
8	Fluoride as F, mg/l	APHA 4500F- C	0.70	1.50	1.5 (max)
9	Sulphates (SO ₄), mg/l	APHA 4500 SO42- E	10.54	27.42	400 (max)
10	Nitrate as NO ₃ , mg/l	APH4500 NO3- E	6.28	17.0	50 (max)
11	Hexa Chromium as Cr +6, mg/l	APHA 3500Cr B	<0.01	<0.01	0.05
12	Cyanide as CN, mg/l	APHA 4500 CN-C,D	<0.03	<0.03	0.05 (max)
13	Copper as Cu, mg/l	APHA 3111 B,C	0.065	0.147	1.5 (max)
14	Iron as Fe, mg/l	APHA 3500Fe, B	0.078	0.412	0.5 (max)
15	Cadmium as Cd, mg/l	APHA 3111 B,C	<0.003	<0.003	0.01 (max)

(A Govt. of India Autonomous Body)

Environmental Chemical Laboratory

TEST REPORT

16	Selenium as Se, mg/l	APHA 3114 B	<0.01	<0.01	0.05 (max)
17	Arsenic as As, mg/l	APHA 3114 B	0.005	0.007	0.2 (max)
18	Lead as Pb(max), mg/l	APHA 3111 B,C	<0.01	<0.01	0.1 (max)
19	Zinc as Zn(max), mg/l	APHA 3111 B,C	0.005	0.032	15 (max)
20	Sodium Absorption Ratio	By Calculation	7.05	7.40	
21	Total Coliform (CFU/ml)	APHA 9221 B	542	348	5000
22	Fecal Coliform (CFU/ml)	APHA 9221 B	32	120	300
23	Manganese as Mn, mg/l		<0.005	<0.005	0.1
24	Sodium as Na, mg/l		37.31	39.95	
25	Potassium as K, mg/l		1.94	4.52	
26	Nickel as Ni, mg/l		0.015	0.016	0.02
27	Chemical Oxygen Demand, mg/l		24.0	28.0	
28	Free Ammonia, mg/l		<0.01	<0.01	0.5
29	Boron as B, mg/l		0.014	0.019	0.5

Authorized Signatory

Senor Principal Scientist

Dr Arakshital Majhie of Minerals & Materials Technology

Senior Principal Scientist-751013, Odisha, INDIA

Phone - 0674-2379236 E mail I.D- arakshita@immt.res.in

(A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI

Test report No – 11/2024-003

Source of Sample: Ganthigadia

Sample receiving Date: 14.11.2024

Type of Sample: Well water

Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as p	Test Result	
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	1.64
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.43@25.0° C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	841.0
4.	Total Hardness (as CaCO₃),mg/L	Part 21	200	600	572.0
5.	Calcium as Ca, mg/L	Part 40	75	200	63.33
6.	Magnesium as Mg, mg/L	Part 46	30	100	100.60
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	470.0
8.	Chloride as Cl, mg/L	Part 32	250	1000	64.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	119.26
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	1.00
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.137
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.007
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	<0.005
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.139
15:	Lead as Pb, mg/L	Part 47	0.01	No relaxation	<0.010
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.003
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.008
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.015

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientist 1013, Odisha, INDIA

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2024	
Test report No – 11/2024-003		
Source of Sample: Ganthigadia	Sample receiving Date: 14.11.2024	
Type of Sample: Well water	Sample Analysis Date: 15.11.2024	

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS Version	Test Result	
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14	-		1185
22.	Total Suspended Solid, mg/l	Part 17	-		4.1
23.	Nitrite as NO ₂ , mg/I	Part 34			0.215
24.	Nitrate as NO ₃ , mg/I	Part 34	45	No relaxation	34.3
25.	Sodium as Na, mg/l	Part 45	-	-	34.18
26.	Potassium as K, mg/l	Part 45	-	-	3.01
27.	Residual Free Chlorine, mg/I	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38		-	2.6
30.	Biological Oxygen Demand, mg/l	Part 44		-	1.6
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	>542
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	79

Authorized Signatory

Dr. Arakshita Majhi Demor Principal Scientist Peral Chemical Lab (18017025 2017, NABL

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

'End of Test Report'

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date: 16.12.2024		
Test report No – 11/2024-004			
Source of Sample: Khaliberena	Sample receiving Date :	14.11.2024	
Type of Sample: Well water	Sample Analysis Date :	15.11.2024	

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as p	Test Result	
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	0.41
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.61@25.0 °C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	484.0
4.	Total Hardness (as CaCO₃),mg/L	Part 21	200	600	296.0
5.	Calcium as Ca, mg/L	Part 40	75	200	56.91
6.	Magnesium as Mg, mg/L	Part 46	30	100	37.42
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	342.0
8.	Chloride as Cl, mg/L	Part 32	250	1000	18.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	49.82
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	0.71
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.176
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.046
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	0.002
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.095
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	<0.010
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	0.003
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.011
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.008

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientist 751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative *source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory**

Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 16.12.2024 Test report No - 11/2024-004 Source of Sample: Khaliberena Sample receiving Date: 14.11.2024 Type of Sample: Well water Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS Versio	Test Result	
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14			716
22.	Total Suspended Solid, mg/l	Part 17			2.9
23.	Nitrite as NO ₂ , mg/l	Part 34			0.081
24.	Nitrate as NO₃, mg/I	Part 34	45	No relaxation	14.3
25.	Sodium as Na, mg/l	Part 45	_		33.08
26.	Potassium as K, mg/l	Part 45			1.11
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.01
29.	Dissolved Oxygen, mg/l	Part 38			6.4
30.	Biological Oxygen Demand, mg/l	Part 44			4.6
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	221
32.	Fecal Coliform by MPN .	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	17

Authorized Signatory, Arakshita Majhi

Dr. Arakshita Majhi eswar-751013, Odisha, INDIA

Senior Principal Scientist Phone: 0674-2379236,

E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

'End of Test Report'

(A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI

Test report No – 11/2024-005

Source of Sample: SARAPA

Sample receiving Date: 14.11.2024

Type of Sample: Well water

Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	9.23
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.83@25.0° C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	461.0
4.	Total Hardness (as CaCO₃),mg/L	Part 21	200	600	284.0
5.	Calcium as Ca, mg/L	Part 40	75	200	78.56
6.	Magnesium as Mg, mg/L	Part 46	30	100	21.38
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	212.0
8.	Chloride as Cl, mg/L	Part 32	250	1000	65.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	52.08
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	0.54
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.152
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.042
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	<0.005
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.177
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	<0.010
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.003
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.012
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.007

Authorized Signatory

Dr. Arakshita Majhi Sen or Principal Scientist Sen or Principal Scientist Englishmental Co. nical Laby (ISO17022-2017, NABL I

Dr. Arakshita Maj Bhubaneswar-751013, Odisha, INDIA

Senior Principal Scientist Phone: 0674-2379236,

E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O

(A Govt. of India Autonomous Body) Environmental Chemical Laboratory

Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI

Test report No – 11/2024-005

Source of Sample: SARAPA

Sample receiving Date: 14.11.2024

Type of Sample: Well water

Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14	-		688
2 2.	Total Suspended Solid, mg/l	Part 17	-		14.2
23.	Nitrite as NO ₂ , mg/l	Part 34	-		0.122
24.	Nitrate as NO ₃ , mg/I	Part 34	45	No relaxation	13.1
25.	Sodium as Na, mg/l	Part 45			
26.	Potassium as K, mg/l	Part 45			27.83
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	2.13 <0.1
28.	Arsenic as As, mg/I	Part 37	0.01	No relaxation	
29.	Dissolved Oxygen, mg/l	Part 38			<0.010
30.	Biological Oxygen Demand, mg/I	Part 44	_	-	4.6
31.	Total Coliform by MPN	IS 1622 RA		-	1.0
	The state of the s	2019	Shall not be detectable in 100ml sample	No relaxation	11
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	2

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientistar-751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

rakshita Majhi

- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

'End of Test Report'

(A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI

Test report No – 11/2024-006

Source of Sample: SIBAPUR

Sample receiving Date: 14.11.2024

Type of Sample: Well water

Sample Analysis Date: 15.11.2024

Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result	
		Acceptable limit	Permissible Limit		
Turbidity, NTU	Part 10	1	5	1.39	
pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.61@25.0 °C	
Total Dissolved Solids mg/L	Part 16	500	2000	366.0	
Total Hardness (as CaCO₃),mg/L	Part 21	200	600	230.0	
Calcium as Ca, mg/L	Part 40	75	200	55.31	
Magnesium as Mg, mg/L	Part 46	30	100	22.36	
Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	196.0	
Chloride as Cl, mg/L	Part 32	250	1000	33.0	
Sulfate as SO ₄ , mg/L	Part 24	200	400	37.24	
Fluoride as F, mg/L	Part 60	1.0	1.5	0.59	
Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.162	
Copper as Cu, mg/L	Part 42	0.05	1.5	0.036	
Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	0.044	
Zinc as Zn, mg/L	Part 49	5.0	15.0	0.016	
Lead as Pb, mg/L	Part 47	0.01	No relaxation	<0.010	
Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.003	
Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.018	
Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.014	
	Turbidity, NTU pH@Temp° C Total Dissolved Solids mg/L Total Hardness (as CaCO ₃),mg/L Calcium as Ca, mg/L Magnesium as Mg, mg/L Alkalinity as CaCO ₃ , mg/L Chloride as Cl, mg/L Sulfate as SO ₄ , mg/L Iron as Fe, mg/L Iron as Fe, mg/L Copper as Cu, mg/L Manganese as Mn, mg/L Zinc as Zn, mg/L Lead as Pb, mg/L Cadmium as Cd, mg/L Chromium as Cr, mg/L	Turbidity, NTU Part 10 pH@Temp^ C Part 11 Total Dissolved Solids mg/L Part 16 Total Hardness (as CaCO ₃),mg/L Part 21 Calcium as Ca, mg/L Part 40 Magnesium as Mg, mg/L Part 23 Chloride as Cl, mg/L Part 23 Chloride as Cl, mg/L Part 24 Fluoride as F, mg/L Part 24 Fluoride as F, mg/L Part 53 Copper as Cu, mg/L Part 53 Copper as Cu, mg/L Part 42 Manganese as Mn, mg/L Part 42 Manganese as Mn, mg/L Part 42 Lead as Pb, mg/L Part 49 Lead as Pb, mg/L Part 47 Cadmium as Cd, mg/L Part 41 Chromium as Cr, mg/L Part 52	(P) of IS:3025 Vota Acceptable limit Turbidity, NTU Part 10 1 pH@Temp° C Part 11 6.5-8.5 Total Dissolved Solids mg/L Part 16 500 Total Hardness (as CaCO3),mg/L Part 21 200 Calcium as Ca, mg/L Part 40 75 Magnesium as Mg, mg/L Part 46 30 Alkalinity as CaCO3, mg/L Part 23 200 Chloride as CI, mg/L Part 32 250 Sulfate as SO4, mg/L Part 42 200 Fluoride as F, mg/L Part 60 1.0 Iron as Fe, mg/L Part 53 0.3 Copper as Cu, mg/L Part 42 0.05 Manganese as Mn, mg/L APHA(PART 3111B) 0.1 Zinc as Zn, mg/L Part 49 5.0 Lead as Pb, mg/L Part 47 0.01 Cadmium as Cd, mg/L Part 41 0.003 Chromium as Cr, mg/L Part 52 0.05	(P)of IS:3025 Version) Acceptable limit Permissible Limit Turbidity, NTU Part 10 1 5 pH@Temp° C Part 11 6.5-8.5 No relaxation Total Dissolved Solids mg/L Part 16 500 2000 Colspan="2">Total Hardness (as CaCO ₃),mg/L Part 21 200 600 Calcium as Ca, mg/L Part 46 30 100 Magnesium as Mg, mg/L Part 23 200 600 Chloride as CI, mg/L Part 32 250 1000 Sulfate as SO ₄ , mg/L Part 24 200 400 Fluoride as F, mg/L Part 60 1.5 Iron as Fe, mg/L Part 42 0.05 1.5 Manganese as Mn, mg/L APHA(PART 3111B) <td col<="" td=""></td>	

Authorized Signatory

Dr. Arakshita Majhi Sequor Principal Scientist Environmental Sequentist

Dr. Arakshita Majhianeswar-751013, Odisha, INDIA

Senior Principal Scientist Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory**

Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 16.12.2024 Test report No - 11/2024-006 Source of Sample: SIBAPUR Sample receiving Date: 14.11.2024 Type of Sample: Well water Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14			561
22.	Total Suspended Solid, mg/l	Part 17	-		2.8
23.	Nitrite as NO ₂ , mg/l	Part 34	_		0.049
24.	Nitrate as NO₃, mg/I	Part 34	45	No relaxation	6.12
25.	Sodium as Na, mg/l	Part 45			13.8
26.	Potassium as K, mg/l	Part 45	-	-	16.58
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/I	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38			2.4
30.	Biological Oxygen Demand, mg/l	Part 44			1.5
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	542
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	21

Authorized Signatory Dr. Arakshita Majhi

ineswar-751013, Odisha, INDIA

Dr. Arakshita Majhi

Senior Principal Scientist Phone: 0674-2379236. E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory. 2.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2	024
Test report No – 11/2024-007		
Source of Sample: Charadagadia	Sample receiving Date :	14.11.2024
Type of Sample: well water		

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	2.28
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.25@25.0° C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	1392.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	686.0
5.	Calcium as Ca, mg/L	Part 40	75	200	75.35
6.	Magnesium as Mg, mg/L	Part 46	30	100	121.01
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	504.0
8.	Chloride as CI, mg/L	Part 32	250	1000	181.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	147.19
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	1.10
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.181
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	0.040
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.016
15.	Lead as Pb, mg/L	Part 47	0.01		0.186
16.	Cadmium as Cd, mg/L	Part 41		No relaxation	<0.010
17.			0.003	No relaxation	0.002
	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.036
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.017

Authorized Signatory

Control Purchase Scientist

Dr. Arakshita Majhi

Senior Principal Scientist of June 18 Action of Phone : 0674-2379236 Phone : 0674-237924 Phone : 0674

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2024		
Test report No – 11/2024-007			
Source of Sample: Charadagadia	Sample reset to D.		
and a cultural and Baula	Sample receiving Date :	14.11.2024	

SI No	Characteristics	(5) (10 5000		10500:2012(Latest	Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14	-		1973
22.	Total Suspended Solid, mg/l	Part 17			4.8
23.	Nitrite as NO ₂ , mg/l	Part 34			
24.	Nitrate as NO ₃ , mg/l	Part 34	45	No relaxation	0.527
25.	Sodium as Na, mg/l	Part 45			184.0
26.	Potassium as K, mg/I	Part 45		-	159.6
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	4.84
28.	Arsenic as As, mg/l	Part 37	0.01	1.0	<0.1
29.	Dissolved Oxygen, mg/l	Part 38		No relaxation	<0.010
30.	Biological Oxygen Demand, mg/l	Part 44		-	2.6
31.	Total Coliform by MPN			-	1.6
J1.	Total Comorni by MPN	IS 1622 RA	Shall not be detectable	No relaxation	278
32.	Family 15	2019	in 100ml sample		
32.	Fecal Coliform by MPN	IS 1622 RA	Shall not be detectable	No relaxation	120
200	- the - ' - 1.0'	2019	in 100ml sample		

Authorized Signatory

Dr. Arakshita Majhi Senior Frincipal Scientist Growth Chemica Lab) (\$017025 2017, NABL Lab) Growth Strain (\$1.5 Sustainability Dept. SIR-Institute of Minerals & Materials Technology

Dr. Arakshita Majhbaneswar-751013, Odisha, INDIA

Senior Principal Scientist Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.20	024
Test report No – 11/2024-008		
Source of Sample: KOCHILAMARA	Sample receiving Date :	14.11.2024
Type of Sample: Well water	Sample Analysis Date :	15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	0.46
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.49@25.0° C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	738.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	376.0
5.	Calcium as Ca, mg/L	Part 40	75	200	46.49
6.	Magnesium as Mg, mg/L	Part 46	30	100	63.18
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	454.0
8.	Chloride as Cl, mg/L	Part 32	250	1000	63.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	83.03
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	1.00
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.216
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.034
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	<0.005
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.052
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.010
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.003
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation No relaxation	0.015

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientist 51013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

NABL Lab)

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date: 16.12.2024		
Test report No – 11/2024-008			
Source of Sample: KOCHILAMARA	Sample receiving Date: 14.11.2024		
Type of Sample: Well water			

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14			1181
22.	Total Suspended Solid, mg/l	Part 17		-	1.9
23.	Nitrite as NO ₂ , mg/l	Part 34			0.264
24.	Nitrate as NO ₃ , mg/l	Part 34	45	No relaxation	61.0
25.	Sodium as Na, mg/l	Part 45			95.32
26.	Potassium as K, mg/l	Part 45			1.53
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38			3.2
30.	Biological Oxygen Demand, mg/l	Part 44	-		1.6
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	542
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	14

Authorized Signatory

Dr. Arakshita Majhi

Dr. Arakshita Maji Hubaneswar-751013, Odisha, INDIA

Senior Principal Scientist
Phone: 0674-2379236,
E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.20	024
Test report No - 11/2024-009		
Source of Comple . KHADACDDACAD		
Source of Sample: KHARAGPRASAD	Sample receiving Date :	14.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	1.21
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	6.88@25.0° C
3.	Total Dissolved Solids mg/L	Part 16	500	2000	303.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	166.0
5.	Calcium as Ca, mg/L	Part 40	75	200	35.27
6.	Magnesium as Mg, mg/L	Part 46	30	100	18.95
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	124.0
8.	Chloride as CI, mg/L	Part 32	250	1000	21.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	36.73
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	0.18
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.270
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.013
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	0.017
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.097
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	<0.010
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.010
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.027
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.027

Authorized Signatory

Dr. Arakshita Majhi Venior Principal Scientist

Dr. Arakshita Majhi-Institute of Minerals & Materials Technology Senior Principal Scientist

Majhi-Institute of Minerals & Materials Technology
Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory**

Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 16.12.2024 Test report No - 11/2024-009 Source of Sample: KHARAGPRASAD Sample receiving Date: 14.11.2024 Type of Sample: Well water Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14	-		413
22.	Total Suspended Solid, mg/l	Part 17			3.7
23.	Nitrite as NO ₂ , mg/l	Part 34			0.127
24.	Nitrate as NO ₃ , mg/I	Part 34	45	No relaxation	19.2
25.	Sodium as Na, mg/l	Part 45	-		14.85
26.	Potassium as K, mg/l	Part 45			12.27
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	
29.	Dissolved Oxygen, mg/l	Part 38			<0.010
30.	Biological Oxygen Demand, mg/I	Part 44	<u></u>		1.4
31.	Total Coliform by MPN	IS 1622 RA	Shall not be detectable	N	1.0
	, , , , , , , , , , , , , , , , , , , ,	2019	in 100ml sample	No relaxation	>542
32.	Fecal Coliform by MPN	IS 1622 RA	Shall not be detectable	No relaxation	33
		2019	in 100ml sample	140 TETAXACION	33

Authorized Signatory

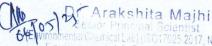
Dr. Arakshita Majhi

Dr. Arakshita Majhi Senior Principal Scientist
Senior D. (Favirosmental Chemical Lab) (S017025 2017, NABL Lab) Senior Principal Scientist 131 & Sustainability Dept.

Phone: 0674-2379236, hute of Minerals & Materials Technology E mail - arakshita@imint.res.in

NOTES:

- The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.


(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2	024
Test report No - 11/2024-010		
Source of Sample: MOTANGA	Sample receiving Date :	14.11.2024
Type of Sample: Well water	Sample Analysis Date :	

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 10500:2012(Latest Version)		Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	1.15
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.56@25.0
3.	Total Dissolved Solids mg/L	Part 16	500	2000	810.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	422.0
5.	Calcium as Ca, mg/L	Part 40	75	200	92.18
6.	Magnesium as Mg, mg/L	Part 46	30	100	46.66
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	364.0
8.	Chloride as Cl, mg/L	Part 32	250	1000	80.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	137.12
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	1.00
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.112
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.112
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	0.009
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	0.115
16.	Cadmium as Cd, mg/L	Part 41	0.003		<0.010
17.	Chromium as Cr, mg/L			No relaxation	<0.003
		Part 52	0.05	No relaxation	0.019
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.009

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientisteswar-751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory

Bhubaneswar, Odisha TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI

Test report No – 11/2024-010

Source of Sample: MOTANGA

Sample receiving Date: 14.11.2024

Type of Sample: Well water

Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025		ments as per IS 10500:2012(Latest Version)	
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14		_	1156
22.	Total Suspended Solid, mg/l	Part 17			2.6
23.	Nitrite as NO ₂ , mg/I	Part 34			0.085
24.	Nitrate as NO ₃ , mg/I	Part 34	45	No relaxation	16.7
25.	Sodium as Na, mg/l	Part 45	-		77.02
26.	Potassium as K, mg/l	Part 45		-	1.22
27.	Residual Free Chlorine, mg/I	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38	-		7.4
30.	Biological Oxygen Demand, mg/l	Part 44			2.4
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	33
32.	Fecal Coliform by MPN.	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	2

Authorized Signatory

Dr. Arakshita Maihalk-Institute of Machine

Senior Principal Scientist Standards & Materials Technology
Senior Principal Scientist Annual Scientist Standards Scientist Standards Scientist Standards Scientist Scientist Standards Scientist Standards Scientist Sc

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2	024
Test report No - 11/2024-011		
Source of Sample: GALPADA	Sample receiving Date :	14.11.2024
		~~·~~·~~~~

SI No	Characteristics	(D)-f1C-2025		er IS 10500:2012(Latest ersion)	Test Result
	7 111		Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	0.42
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.09@ 25.0
3.	Total Dissolved Solids mg/L	Part 16	500	2000	283.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	138.0
5.	Calcium as Ca, mg/L	Part 40	75	200	36.07
6.	Magnesium as Mg, mg/L	Part 46	30	100	11.66
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	142.0
8.	Chloride as CI, mg/L	Part 32	250	1000	
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	14.0
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	19.40
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.28
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.216
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1		0.011
14.	Zinc as Zn, mg/L	Part 49	5.0	0.3	<0.005
15.	Lead as Pb, mg/L	Part 47	0.01	15.0	0.051
16.	Cadmium as Cd, mg/L			No relaxation	<0.010
457		Part 41	0.003	No relaxation	<0.003
.7.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.031
.8.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.012

Authorized Signatory

Dr. Arakshita Majhi Senior Principal Scientist

Dr. Arakshita Majht SIR-Institute of Minerals & Materials Technology Senior Principal Scientist baneswar-751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha **TEST REPORT**

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2024
Test report No - 11/2024-011	
Source of Sample: GALPADA	Sample receiving Date: 14.11.2024
Type of Sample: Well water	Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	네 시간 여자에서 얼마가 되었는데 되는데 이 이 경험이 없어 없었다.	ents as per IS 10500:2012(Latest Version)	
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14	-	-	350
22.	Total Suspended Solid, mg/l	Part 17		-	1.5
23.	Nitrite as NO ₂ , mg/l	Part 34		_	0.075
24.	Nitrate as NO₃, mg/I	Part 34	45	No relaxation	12.8
25.	Sodium as Na, mg/I	Part 45			10.80
26.	Potassium as K, mg/l	Part 45		-	0.46
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38			2.8
30.	Biological Oxygen Demand, mg/l	Part 44			1.6
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	348
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	11

Authorized Signatory

Dr. Arakshita Majhi
Senicr Principal Scientist
(Environmental Chemical Lab) (3017025:2017, NABL Lab)
Environmental & Sustainability Dept.

Phylogogyar 751012, Odiaba (NDIA) Senior Principal Scientistubaneswar-751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2	024
Test report No - 11/2024-012		
Source of Sample: ETAPA	Sample receiving Date :	14.11.2024
Type of Sample: Well water	Sample Analysis Date :	15.11.2024

SI No	Characteristics	Test Method Requirement (P)of IS:3025		er IS 10500:2012(Latest ersion)	Test Result
			Acceptable limit	Permissible Limit	
1.	Turbidity, NTU	Part 10	1	5	11.24
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.28@ 25.0
3.	Total Dissolved Solids mg/L	Part 16	500	2000	676.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	312.0
5.	Calcium as Ca, mg/L	Part 40	75	200	44.09
6.	Magnesium as Mg, mg/L	Part 46	30	100	49.09
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	49.09
8.	Chloride as CI, mg/L	Part 32	250	1000	83.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	51.58
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.93
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.073
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1		0.013
14.	Zinc as Zn, mg/L	Part 49	5.0	0.3	0.081
15.	Lead as Pb, mg/L	Part 47	0.01	15.0	0.011
16.	Cadmium as Cd, mg/L			No relaxation	<0.010
		Part 41	0.003	No relaxation	<0.003
17.	Chromium as Cr, mg/L	Part 52	0.05	No relaxation	0.007
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.010

Authorized Signatory

Dr. Arakshita Majhi Senior Principal Scientist (ISO17025:2017, NABL La

Dr. Arakshita Majhi

CSIR-Institute of Minerals & Materials Technology
Bhubaneswar-751013, Odisha, INDIA

Senior Principal Scientist Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory**

Bhubaneswar, Odisha **TEST REPORT**

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 16.12.2024 Test report No - 11/2024-012 Source of Sample: ETAPA Sample receiving Date: 14.11.2024 Type of Sample: Well water Sample Analysis Date: 15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS Versio		Test Result
			Acceptable limit	Permissible Limit	
19.	Color, Hazen Units	Part 4	5	15	< 5
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable
21.	Conductivity, µs/cm	Part 14		-	1120
22.	Total Suspended Solid, mg/l	Part 17			15.6
23.	Nitrite as NO ₂ , mg/l	Part 34			0.112
24.	Nitrate as NO₃, mg/I	Part 34	45	No relaxation	17.2
25.	Sodium as Na, mg/l	Part 45		-	111.3
26.	Potassium as K, mg/l	Part 45		_	15.42
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010
29.	Dissolved Oxygen, mg/l	Part 38		-	2.5
30.	Biological Oxygen Demand, mg/l	Part 44			2.1
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	221
32.	Fecal Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	79

Authorized Signatory

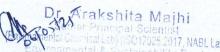
Dr. Arakshita Majhi

swar-751013, Odisha, INDIA Senior Principal Scientist

Phone: 0674-2379236. E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.


(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to:	TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2	024
Test report No - 11/2024-013			
Source of S	ample : NARENDRAPUR	Sample receiving Date :	14.11.2024
Type of San	nple: Well water	Sample Analysis Date :	15.11.2024

SI No	Characteristics	Test Method (P)of IS:3025		nents as per IS 10500:2012(Latest Version)	
			Acceptable limit	Permissible Limit	+
1.	Turbidity, NTU	Part 10	1	5	0.67
2.	pH@Temp° C	Part 11	6.5-8.5	No relaxation	7.41@25.0
3.	Total Dissolved Solids mg/L	Part 16	500	2000	539.0
4.	Total Hardness (as CaCO ₃),mg/L	Part 21	200	600	322.0
5.	Calcium as Ca, mg/L	Part 40	75	200	55.31
6.	Magnesium as Mg, mg/L	Part 46	30	100	44.71
7.	Alkalinity as CaCO ₃ , mg/L	Part 23	200	600	286.0
8.	Chloride as CI, mg/L	Part 32	250	1000	44.0
9.	Sulfate as SO ₄ , mg/L	Part 24	200	400	46.80
10.	Fluoride as F, mg/L	Part 60	1.0	1.5	0.82
11.	Iron as Fe, mg/L	Part 53	0.3	No relaxation	0.245
12.	Copper as Cu, mg/L	Part 42	0.05	1.5	0.243
13.	Manganese as Mn, mg/L	APHA(PART 3111B)	0.1	0.3	<0.005
14.	Zinc as Zn, mg/L	Part 49	5.0	15.0	0.059
15.	Lead as Pb, mg/L	Part 47	0.01	No relaxation	
16.	Cadmium as Cd, mg/L	Part 41	0.003	No relaxation	<0.010
17.	Chromium as Cr, mg/L	Part 52	0.05		0.003
18.	Nickel as Ni, mg/l	Part 54	0.02	No relaxation	0.038
	1 110/1	1 011 34	0.02	No relaxation	0.007

Authorized Signatory

Dr. Arakshita Majhi itute of Minerals & Materials

Senior Principal Scientist var-751013, Odisha, INDIA

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI	Date : 16.12.2024				
Test report No - 11/2024-013					
Source of Sample: NARENDRAPUR	Sample receiving Date: 14.11.2024				
Type of Sample: Well water	Sample Analysis Date: 15.11.2024				

SI No	Characteristics	Test Method (P)of IS:3025	Requirements as per IS 1 Version	Test Result		
			Acceptable limit	Permissible Limit		
19.	Color, Hazen Units	Part 4	5	15	< 5	
20.	Odour	Part 5	Agreeable	Agreeable	Agreeable	
21.	Conductivity, µs/cm	Part 14	-		821	
22.	Total Suspended Solid, mg/l	Part 17			2.4	
23.	Nitrite as NO ₂ , mg/l	Part 34			0.218	
24.	Nitrate as NO₃, mg/l	Part 34	45	No relaxation	39.6	
25.	Sodium as Na, mg/l	Part 45	-	-	50.54	
26.	Potassium as K, mg/l	Part 45	-	-	5.89	
27.	Residual Free Chlorine, mg/l	Part 26	0.2	1.0	<0.1	
28.	Arsenic as As, mg/l	Part 37	0.01	No relaxation	<0.010	
29.	Dissolved Oxygen, mg/l	Part 38		-	1.2	
30.	Biological Oxygen Demand, mg/l	Part 44	-	-	0.6	
31.	Total Coliform by MPN	IS 1622 RA 2019	Shall not be detectable in 100ml sample	No relaxation	542	
32.	Fecal Coliform by MPN IS 1622 RA		Shall not be detectable No relaxation in 100ml sample		21	

Authorized Signatory

Dr. Arakshita Majhi
(Edwards Chemical Lab) (ISO17025-2017, NABL Lab)
Environmental & Sustainability Dept.

Dr. Arakshita Majhi de of Minerals & Materials Technology

Bhubaneswar-751013, Odisha, INDIA Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Certified

Ref. no: Envlab/24-25/TR-12306 Date: 18.11.2024

ASH ANALYSIS REPORT

1. Name of the Indus : M/s TATA Steel Limited Meramandali, Dhenkanal

2. Sampling Location : S-1: Fly Ash collected from BFPP-1

: S-2: Bed Ash collected from BFPP-1 :S-3: Fly ash collected from AEL-165 :S-4: Bed ash collected from ASL-165

3. Date of Sampling : 11.11.2024

4. Date of Analysis : 12.11.2024 to 18.11.2024
5. Sample Collected by : VCSPL Representative

Sl. No.	Name of the U Parameters	Unit	Govt. of India, MoEF & CC Schedule-II based on leachable concentration limits	Analysis Results				
			(TCLP) or Soluble Threshold limit Concentration (STLC), Class A2016	S-1	S-2	S-3	S-4	
01	Arsenic as As	mg/l	5.0 mg/l	0.004	0.002	0.003	0.002	
02	Barium as Ba	mg/l	100.0 mg/l	BDL	BDL	BDL	BDL	
03	Cadmium as cd	mg/l	1.0 mg/l	BDL	BDL	BDL	BDL	
04	Chromium as Cr	mg/l	5.0 mg/l	BDL	BDL	BDL	BDL	
05	Lead as Pb	mg/l	5.0 mg/l	BDL	BDL	BDL	BDL	
06	Mercury as Hg	mg/l	0.2 mg/l	BDL	BDL	BDL	BDL	
07	Selenium as Se	mg/l	1.0 mg/l	0.003	0.003	0.003	0.003	
08	Iron as Fe	mg/l		0.81	0.41	0.69	0.36	
09	Nickel as Ni	mg/l	20.0 mg/l	0.22	0.16	0.24	0.17	
10	Zinc as Zn	mg/l	250.0 mg/l	0.48	0.35	0.49	0.33	
11	Manganese as Mn	mg/l	10.0 mg/l	0.41	0.28	0.50	0.32	
12	Cobalt as Co	mg/l	80.0 mg/l	BDL	BDL	BDL	BDL	
13	Copper as Cu	mg/l	25.0 mg/l	0.37	0.28	0.39	0.26	
14	Vanadium as V	mg/l	24.0 mg/l	BDL	BDL	BDL	BDL	
15	Aluminium as Al	mg/l		4.7	4.3	5.3	4.8	
16	Fluoride as F	mg/l	180.0 mg/l	1.79	1.31	1.89	1.36	

CSR Expenditure and Activities

(Around Tata Steel Ltd, Meramandali & TSM-CPP(AEL))

Period: From April'24 to Mar'25

PROGRAM HEAD	Expenditure in Lakh	MAJOR INTERVENTIONS/REMARKS
HEALTH	153.85	Public Health Unit; Rishta; Project Drishti, Poshan NCD, VBD
Agriculture	126.51	Agricultural activity
Environment	3.03	Plantation
Empowerment	7.2	GCE
DRINKING WATER	166.38	Installation of tubewells; supply of drinking water
Ethnicity	14.1	Cultural events
EDUCATION	828.61	School infrastructure; Education signature project, Green school project, Pre-matric coaching
SPORTS	24.26	
Skill Development	7.2	
Miscellaneous	253.85	
TOTAL	1895.77	

Environment Laboratory TATA Steel Meramandali, Odisha

Ref.No.EMD/LAB/2024/0002

			Oct-24	Nov-24	Dec-24	Jan-25	Feb-25	Mar-25
S.No	Name of the unit	Location			Le	9		
	440 8414 6	Near Entrance Point	84.1	84.5	83.2	83.6	83.7	81.7
	110 MW Compressor House AEL	Near Compressor	93	91.5	91.6	91.4	90.6	87.5
2	AEL	Inside Operator office	77.9	71.6	74.8	76	75	73.3
2	150 MW Ash Conveying	Near Entrance Point	85.2	84.9	85.1	83.1	85.6	84.7
	Compressor House AEL	Near Compressor	93.4	94.1	92.1	86.8	90	90.3
	Compressor House ALL	Inside Operator office	79.2	78.3	80	80	75.6	79.8
	165 MW Compressor House	Near Entrance Point	81.6	83	80.5	82.5	80	81.4
3	AEL	Near Compressor	92.4	92.7	90.1	90.8	88.2	89.7
	ALL	Inside Operator office	79	77.6	78.5	70.8	73.2	70.6
		CFBC Boiler-1						
		Near ID Fan-1	SD	SD	SD	SD	SD	SD
		Near ID Fan-2	SD	SD	SD	SD	SD	SD
		Near S A Fan	SD	SD	SD	SD	SD	SD
		Near P.A. Fan	SD	SD	SD	SD	SD	SD
		Near Boiler -1 Area	SD	SD	SD	SD	SD	SD
		CFBC- Boiler-2						
		Near ID Fan-1	85.7	85.4	85.8	SD	85.9	85.8
		Near ID Fan-2	86.2	85.9	86	SD	85.7	85.7
		Near S A Fan	91.8	91.2	92.2	SD	91.5	90.2
	300 MW Power Plant AEL	Near P.A. Fan	92.1	91.9	92.6	SD	91.6	90.4
4		Near Boiler -2 Area	84.5	84.6	84.8	SD	84.8	84.8
4		CFBC- Boiler-3						
		Near ID Fan-1	86.1	85.7	85.6	85.5	85.1	85.1
		Near ID Fan-2	87	86.5	86.7	86.1	85.4	85.5
		Near S A Fan	92.4	92.6	92.7	91.2	91.7	91
		Near P.A. Fan	92.7	91	93.2	91.8	91.8	90.8
		Near Boiler -3 Area	85.1	85.4	85.3	85.4	85.2	85.4
		CFBC- Boiler-4						
		Near ID Fan-1	SD	SD	85.1	85.8	84.8	84.8
		Near ID Fan-2	SD	SD	85.5	85.4	85.4	85.4
		Near S A Fan	SD	SD	91.2	91.3	90	91.2
		Near P.A. Fan	SD	SD	92.2	91.1	90.3	91.5
		Near Boiler -4	SD	SD	85.2	84.7	85	84.9
		CFBC- Boiler-5						
		Near ID Fan-1	SD	SD	SD	SD	SD	SD
		Near ID Fan-2	SD	SD	SD	SD	SD	SD
		Near S A Fan	SD	SD	SD	SD	SD	SD
		Near P.A. Fan	SD	SD	SD	SD	SD	SD
		Near Boiler -5	SD	SD	SD	SD	SD	SD
		CFBC- Boiler-6						
5	185 MW Power Plant AEL	Near ID Fan-1	81.1	81.1	80.2	80.5	80	80.5
_		Near ID Fan-2	81.3	80.8	80.5	80.8	80.3	81.2
		Near S A Fan	91.1	90.2	91.2	91.4	92	92.1
		Near P.A. Fan	91.4	91.1	91.5	92	91.8	91.5
		Near Boiler -6	84.8	84.8	85.1	84.8	85.3	85
		Near Silo Area	83.5	82.8	83.5	82.4	82.3	82.7
		Near 150 MW TG	89.2	89.2	89.2	89.2	89.1	89.3
		Near 165 MW TG	90.4	89.4	88.4	88.9	88.4	88.8
		Control Room Office	62.4	61.2	64	68.3	62.5	70.4

SUMMARY OF AMBIENT AIR QUALITY MONTHLY AVERAGE VALUES

	Locations of	Monthly Average					
Month	Locations of Monitoring		Unit in mg/m ³				
Worter	Pollutant	PM ₁₀	PM _{2.5}	SO ₂	NOx	СО	
	Standard	100	60	80	80	2	
	CAAQMS-1	114.61	22.72	17.51	24.66	0.66	
	CAAQMS-2	115.40	41.32	23.12	11.31	0.73	
	CAAQMS-3	105.46	41.13	6.39	18.68	0.73	
Oct'24	CAAQMS-4	67.27	33.57	8.10	25.70	0.25	
	CAAQMS-5	92.97	34.30	8.32	20.93	0.96	
	CAAQMS-6	106.28	34.50	14.75	18.66	1.00	
	CAAQMS-7	93.08	47.40	50.66	15.56	0.74	
	CAAQMS-1	144.77	41.61	15.28	24.96	0.70	
	CAAQMS-2	156.66	70.39	23.08	9.64	0.71	
	CAAQMS-3	135.67	66.24	6.46	18.04	0.79	
Nov'24	CAAQMS-4	112.29	72.17	5.49	29.34	0.21	
	CAAQMS-5	147.43	64.61	8.11	19.90	0.52	
	CAAQMS-6	176.41	55.09	14.58	18.78	0.84	
	CAAQMS-7	216.03	95.54	24.14	18.51	1.10	
	CAAQMS-1	160.55	46.26	15.12	24.75	0.73	
	CAAQMS-2	216.80	94.39	23.07	9.61	0.92	
	CAAQMS-3	163.75	76.05	5.65	19.37	1.27	
Dec'24	CAAQMS-4	126.61	84.24	5.24	33.54	0.61	
	CAAQMS-5	148.71	66.81	9.14	26.89	0.53	
	CAAQMS-6	149.22	53.69	14.59	24.62	0.52	
	CAAQMS-7	186.13	91.94	10.11	20.38	1.15	
	CAAQMS-1	184.69	52.22	18.52	17.25	0.41	
	CAAQMS-2	243.09	113.05	23.08	5.47	0.72	
	CAAQMS-3	191.31	96.96	5.42	17.68	1.14	
Jan'25	CAAQMS-4	113.65	71.37	5.95	31.58	0.47	
	CAAQMS-5	150.84	57.52	14.81	10.84	0.62	
	CAAQMS-6	174.27	46.45	15.26	18.28	0.43	
	CAAQMS-7	246.13	126.09	10.54	14.65	1.15	

	Locations of	Monthly Average						
Month	Locations of Monitoring		Unit in		Unit in mg/m ³			
WOITH	Pollutant	PM ₁₀	PM _{2.5}	SO ₂	NOx	co		
	Standard	100	60	80	80	2		
	CAAQMS-1	180.65	55.67	22.90	9.66	0.82		
	CAAQMS-2	220.07	101.39	23.17	9.72	0.43		
	CAAQMS-3	193.09	77.35	9.42	16.17	1.20		
Feb'25	CAAQMS-4	132.01	59.52	5.69	24.10	0.69		
	CAAQMS-5	140.82	52.02	18.79	13.42	0.90		
	CAAQMS-6	154.70	44.05	15.46	15.72	0.49		
	CAAQMS-7	206.59	102.64	8.13	18.40	0.99		
	CAAQMS-1	167.68	67.94	39.69	6.23	0.71		
	CAAQMS-2	233.49	94.75	23.15	4.61	0.76		
	CAAQMS-3	175.38	67.95	10.18	19.16	1.26		
March'25	CAAQMS-4	117.66	51.89	6.70	23.87	0.59		
	CAAQMS-5	150.84	57.52	14.81	10.84	0.62		
	CAAQMS-6	134.42	63.79	19.60	14.77	0.52		
	CAAQMS-7	187.26	86.61	14.75	18.41	0.97		

All values are in µg/m³ except CO values are in mg/m³. All Values are derived from 24 hourly average data except CO values which are derived from 8 hourly average data.

CAAQMS 1: Near Township; CAAQMS 2: Near Utility Department; CAAQMS 3: Near CRM; CAAQMS 4: Near Water Complex; CAAQMS 5: Near Coke Oven 2; CAAQMS 6: Near Wagon Tippler; CAAQMS 7: Near Material Gate, UM: Under Maintenance.

TSM-CPP/SPCB/TS-06/2025-01/186 April 25, 2025

The Member Secretary
State Pollution Control Board, Odisha
PariveshBhawan, A/118,
Nilakantha Nagar, Unit-VIII,
Bhubaneswar-751 012

Subject: Submission of ash 'Annual Implementation Report' for the financial year 2024-25

Dear Sir.

With reference to the captioned subject and Fly ash notification dtd. September 14, 1999 and its amendment, we are submitting hereby the ash 'Annual implementation report' for the period from 1st April' 2024 to 31st March' 2025 of M/s. TSM-CPP located at Ganthigadia, Dist. Angul. Odisha

Particulars	Generation (MT)	Disposal/Utilization (MT)	Disposal/Utilization (%
Fly Ash	729696	729696	100%
Bottom Ash	103217	103217	100%
Total Quantity	832913	832913	100%

Mode of Ash Disposal/Utilization	Quantity (MT)
Brick Manufacturing	187005
Cement Plant	374956
Quarry Filling	9343
NH/ Road Making	244901
Low Lying Area Filling & internal utilisation	16708
Total Utilization/ Disposal Quantity	832913

Hope, the information furnished above is in line with the statutory requirement.

Thanking you

Yours faithfully,

For TSM-CPP

Rajesh Kumar Agrawal (Factory Manager)

Copy to:

1. Deputy Director General Forest(C) IRO, MoEF&CC, Eastern Zone, Bhubaneswar

2. The Divisional Head, CPCB, Eastern Region, Kolkata.

3. The Regional Officer, State Pollution Control Board, Odisha, Angul.

4. Central Electricity Authority (CEA), New Delhi.

TATA STEEL LIMITED

Ganthigadia Nuahata Banarpal Angul 759 128 Odisha India Tel 91 6762 352000

Registered Office Bombay House 24 Homi Mody Street Fort Mumbai 400 001 India Tel 91 22 6665 7371 Fax 91 22 66657724

Corporate Identification Number L27100MH1907PLC000260 Website www.tatasteel.com

Annexure-X

SUMMARY OF GASEOUS EMISSION

Period: From October 2024 to March 2025

AEL, CEMS- 1 (Boiler 1 & 2)				AEL, CEMS- 2 (Boiler 3 & 4)			AEL, CEMS- 3 (Boiler 5 & 6)			
Month	PM in mg/m³	SO2 in mg/m³	NOx in mg/m³	PM in mg/m³	SO2 in mg/m³	NOx in mg/m³	PM in mg/m³	SO2 in mg/m³	NOx in mg/m³	
October, 24	17.84	985.3	116.1	25.00	1132.8	95.5	27.56	999.2	140.9	
November, 24	21.61	1253.3	115.3	25.24	1191.2	89.7	30.61	1044.6	157.7	
December, 24	21.92	1118.2	173.5	30.10	1265.2	70.9	30.81	960.2	118.7	
January, 25	22.37	771.4	130.9	29.76	1278.8	79.6	31.35	948.4	116.4	
February, 25	20.50	766.3	72.7	29.64	1188.7	88.5	32.30	904.9	110.0	
March, 25	29.2	865.0	81.1	32.3	1231.7	36.8	30.3	869.1	118.4	