Ref: NINL/EMC/2024-25/93

Date: 28 Nov 2024

То

Deputy Director General of Forests (C) Ministry of Environment, Forests & Climate Change, Integrated Regional Office (EZ) A/3 Chandrasekharpur, Bhubaneswar 751023

Sub: Submission of Six-Monthly Compliance Report (Apr 2024 to Sep 2024), Neelachal Ispat Nigam Limited

Reference: EC vide letter no. J-11011/23/94-IA.II(I) dated Aug 1, 1996

Dear Sir,

We at Neelachal Ispat Nigam Ltd., while carrying out its operation, reiterate our commitment to preserve the environment. Environmental conditions as stipulated in the legislations / acts related to Air Water and Hazardous Waste are being complied.

We are submitting herewith Six-Monthly Compliance Report for the conditions stipulated in the Environment Clearance for the period from Apr 2024 – Sep 2024 along with monitoring data report for your kind consideration.

The copy of compliance report is also being sent in soft format through email (<u>roez.bsr-mef@nic.in</u>) for your kind perusal. Also, Six Monthly EC compliance is being uploaded on PARIVESH portal.

Hope the above are in line with the statutory requirement.

Thanking you,

Yours sincerely,

Children laushle

Shikhar Kaushik Head SHE & Sustainability, NINL

Enclosure: Annexure

Copy: 1) The Member Secretary, SPCB, Odisha, 2) Regional Officer, SPCB

NEELACHAL ISPAT NIGAM LIMITED

Kalinganagar Industrial Complex, Duburi, Jajpur, Odisha – 755026, India RegdOffice :Samabaya Bhawan, 4th Floor, Unit-9, Janpath, Bhoinagar, Bhubaneswar- 751022, Odisha, India Phone : 8658028151, Email : <u>mdoffice@tsninl.com</u>, Website : <u>www.ninl.in</u>, Corporate Identification Number : U27109OR1982PLC001050

HALF YEARLY COMPLIANCE REPORT

for the period from April 2024 to September 2024

Environment Clearance of 1 MTPA Integrated Iron & Steel Plant

Env Clearance Letter no.:

J-11011/23/94-IA.II(I) dated Aug 1, 1996

Neelachal Ispat Nigam Limited

Kalinga Nagar Industrial Complex, Duburi, Jajpur, Odisha

YEARLY COMPLIANCE REPORT

Date: 28 Nov 2024

Sn	Stipulated Condition	Action Taken
1	The Project authority must strictly adhere to the stipulations made by Orissa Pollution Control Board of the State Government.	Stipulations made by Orissa Pollution Control Board in the form of compliances of Conditions of Consent Order are being adhered. Compliance report is submitted to SPCB, Odisha.
2	No expansion or modification of the plant should be carried out without prior approval of this Ministry.	1 Million Ton Integrated Iron and Steel Plant through Blast Furnace-SMS route have been established. Expansion of the plant has not been carried out yet. The expansion if any shall be carried out only after prior approval of the Ministry of Environment and Forest & CC., Govt. of India
3	Coke Oven Plant should be based on dry quenching process	Coke Oven Plant is based on Dry Quenching technology & is in operation. The heat generated from hot coke is used for generation of high-pressure steam which is utilized in downstream for generation of power.
4	The particulate and gaseous emission (SO ₂ , NOx, and CO) from various process units should confirm to standard prescribed by the competent authorities from time to time. The state Board may specify more stringent standard.	The particulate & gaseous emission level is being regularly monitored by third party Laboratory, empanelled with State Pollution Control Board, Odisha. Analysis report of stack emission of running process units is attached as Annexure-I . The emission level has been found well within standard set by Pollution Control Board.
5	At least five Ambient Air Quality Monitoring Stations should be provided in Consultation with the State Pollution Control Board for measurement of SPM, SO ₂ , NOx, and RSPM. Stack emission along with ambient air quality and work environment quality should be submitted along with statistical analysis to the State Pollution Control Board once in three months and to this ministry once in six months.	Air Quality Monitoring at five locations is being conducted. Third party Laboratory, empaneled with State Pollution Control Board, Odisha has been engaged for AAQ monitoring, Stack Emission Monitoring on regular basis. Report of stack emission along with ambient air quality is being submitted to State Pollution Control Board every month. Report of Ambient Air Quality is attached as Annexure-II .
6	In-plant control measures for checking fugitive emission, spillage of chemical / raw material etc. should be provided and properly maintained specially in the critical areas like blast furnace, sintering plant etc.	In-plant Control measures like Gas Cleaning Plant (GCP), Dust Extraction (DE) Systems, Dry Fog Dust Suppression System (DFDS) at wagon tippler are provided for prevention of fugitive emission. Detail is attached as Annexure III . In addition to these control measures are in place to check spillage of chemical/ raw materials. The equipments are well maintained to ensure effectiveness and efficiency. Fugitive emissions are measured periodically and reported. Report of Fugitive Emission in Blast Furnace and Sinter Plant is attached as Annexure-IV .

Sn	Stipulated Condition	Action Taken
7	Adequate effluent treatment facilities should be provided so that the treated effluent conforms to the prescribed standards prescribed under the EPA 1986.	 We have 3 nos. of Effluent Treatment Plant to treat Effluent generated from plant processes. (i) BF-ETP: Effluent generated in Scrubber based BF-Gas Cleaning Plant is treated in dedicated Effluent Treatment Plant. The treated effluent is recycled back in the Gas Cleaning Plant as scrubbing medium. (ii) SMS ETP: Gas cleaning Plant has been installed in Steel Melting Shop to clean the BOF gas. The effluent generated is treated in dedicated Effluent Treatment Plant. The treated effluent as scrubbing medium. (iii) CO-ETP: Coke Oven & By-product plant has been provided with Effluent Treatment Plant (BOD unit).
8	Adequate number of influent and effluent quality monitoring station should be set up in consultation with the State Pollution Control Board. Regular monitoring should be carried out for relevant parameters. Monitored data along with statistical analysis and interpretation in the form of report should be submitted to this ministry once in six month and the State Pollution Control Board once in three months.	In order to monitor effluent quality, Online Effluent Quality Monitoring Stations have been installed. Treated effluent quality is being monitored on regular basis. Analysis report is submitted to SPCB, Odisha on monthly basis. Analysis report is attached as Annexure-V, Annexure-VI & Annexure-VII.
9	A guard pond of sufficient holding capacity should be provided with to cope up with the effluent discharge due to process disturbance. The contributing units shall be immediately shutdown and will not be started without bringing the system back to normalcy.	Effluent generated in the process units are treated in respective treatment plant & completely recycled. One Lagoon (Harvesting Pond) of sufficient capacity has been provided to collect rainwater & noncontaminated wastewater. Wastewater Recycle Pump has been provided at the outlet of Harvesting Pond to recycle the water in plant process.
10	Efforts should be made to recycle and reuse the entire treated liquid effluents for green belt development, maintenance and for meeting other requirements.	Treated effluent is cooled in Cooling Tower and then pumped back to scrubber as scrubbing medium in Gas Cleaning Plant. Thus, entire treated effluent is completely recycled.
11	Raw material should be brought to the plant site by sea/ rail to the extent possible. Finished product should also be transported through rail to the extent possible. Transportation through road should be kept to the bare minimum to avoid any traffic congestion in the area and cities.	Transportation of Raw Material & Finished Product through rail is gradually increasing and will be maximized. Transportation of Raw Material through rail in Apr 2024-Sep 2024 period has increased to 63.67% from 54.12% in Oct 2023-Mar 2024. Transportation of Finished Product through rail in Apr 2024-Sep 2024 period is 32.72%.
12	A green belt of adequate width (min 100M width) and density should be provided all around the plant in consultation with the State Forest Department specially selecting the local species, 2000-2500 plants per ha of land should be planted.	Approx. 455 Ha green belt has been developed with local species of Chakundi, Babool, Ber, Neem, Ostha, Kadamba, Acacia, Peltophorum, Cassia, S. saman, Teak, Mahaneem, Alstonea, Gambhari, Arjuna, Eucalyptus, Mahua, Karanja, Amla etc.

Sn	Stipulated Condition	Action Taken
13	Noise levels should not exceed 85 dB (A) in the work environment. Workers engaged in the noisy workplaces should be provided with protection devices like ear plugs/ ear muffs etc.	Various measures have been taken to reduce the noise level. Noise generating equipment have been provided with acoustic treatment and silencer. In some areas where is possibility of high noise level, personnel working in these areas have been provided with noise reduction aid such as earmuff, ear plug etc. Also duration of exposure has been limited as per norms. Corrective measures are taken whenever required. Records of noise level taken are attached as Annexure-VIII .
14	An environment management cell should be established with suitably qualified people to carry out various functions under the control of a senior executive who will directly report to the Head of the organization.	At present the Environment Management Deptt. (EMD) is headed by Head (SHE&S), directly reporting to MD&CEO, NINL. Executives in the rank of Asst. General Manager, Area Manager, Sr. Manager have been posted in the department. The EMD has been further reinforced by deploying manpower. In addition, there is dedicated team in each production plant for ensuring smooth running of allpollution control equipment and statutory compliances.
15	Periodical medical checkup of the workers especially with respect to the respiratory disease such as pneumoconiosis etc. should be done and record maintained, and occupational health status intimated to this Ministry once in year.	Medical check-up of employees is conducted periodically by engaging 3 rd party agency. Health check-up programme for 23- 24 period has been conducted covering total 1115 employees. Height, Weight, Chest Expansion, Vision Test, Blood Tests: CBC, ESR, Blood Group Testing, Serum Sugar and Cholesterol, X-Ray of Chest, ECG, Audiometric Test, Lung Function Test were conducted. In 24-25 period Health check-up of 300 employees has been conducted till date.
16	Project Authority should implement socio- economic measures committed by them vide letter of 1.3.96 in addition to the rehabilitation measures governed under State Policy as implemented by ODD in time bound manner	After takeover of Neelachal Ispat Nigam Limited by Tata Steel Long Products Limited, CSR activities are centrally being coordinated by Tata Steel Foundation. Various socio-economic development programs covering livelihood, education, safe drinking water, sports, health care etc. have been undertaken in surrounding areas of plant. Detail activities is attached as Annexure-IX .
17	The fund earmarked for the environmental protection measures should not be diverted for other purposes, its breakup and year-wise expenditure should be reported to this ministry regularly	Adequate funds are being provided by the management for pollution control and to meet recurring cost. Fund / Budget allocated to Environment protection is utilized only for the purpose. After takeover of Neelachal Ispat Nigam Limited by Tata Steel Long Products Limited 168.64 Cr have been spent towards environmental protection measures.
		EMP recommendations compliance:
18	Recommendation made by the consultant in the EMP report should be properly implemented	Various clean technologies have been adopted in plant process. As Air Pollution Control measures, Dust extraction system with bag filters have been installed for junction houses and raw material handling systems. Dust extraction systems with electrostatic precipitator have been provided for sinter machine and at sinter cooler discharge end.
		suitable chimney heights have been provided for proper dispersion. The chimney heights are as per CPCB norms.
		The measures have been adopted to control water pollution providing adequate treatment units.

Annexure-I

REPORT OF ANALYSIS OF STACK EMISSION

Sr	Sampling Location	Apr'24	May'24	Jun'24	July'24	Aug'24	Sep'24	Standard mg/M ³
1	Power Plant Boiler-1	29.42	6.58	15.9	11.61	7.32	33.93*	100
2	Power Plant Boiler-2	14.56	12.32	20.0*	8.23	3.96	9.02	100
3	Power Plant Boiler-3	12.97	11.80	9.16	14.01	12.57	7.50	100
4	Sinter Plant ACP	17.28	22.67	23.31	31.89	69.12	50.28	100
5	Sinter Plant GCP	25.53	26.33	52.95	12.61	12.36	29.20	100
6	Coke Oven Battery	33.74	41.15	36.3	18.42	41.51	34.17	50
7	Blast Furnace Stove	11.32*	13.95*	16.18	28.03	13.21	5.39*	100
8	Blast Furnace Stock House DE Stack	9.66	21.46	16.85	7.74	7.35	13.89	100
9	SMS LHF	25.97	31.56	18.16	35.96	35.01	33.07	100

* Online CEMS monthly avg. value

Sr	Sampling Location	Apr'24		May'24		Jun'24		July'24		Aug'24		Sep'24	
		SO ₂	NOx	SO ₂	NOx	SO ₂	NOx	SO ₂	NOx	SO ₂	NOx	SO ₂	NOx
	Standard mg/NM ³	600	450	600	450	600	450	600	450	600	450	600	450
1	Power Plant Boiler-1	48.1	36.7	48.1	36.7	100.61*	52.31*	51.2	37.1	45.2	33.6	50.65*	55.3 [*]
2	Power Plant Boiler-2	55.2	44.9	55.2	44.9	258.48*	143.25*	46.6	57.8	50.2	35.1	48.6	34.6
3	Power Plant Boiler-3	21.4	38.4	21.4	38.4	20.5	36.6	21.2	35.1	23.4	39.4	24.2	40.2
5	Sinter Plant GCP	16.2	19.9	16.2	19.9	16.6	19.7	16.1	18.6	16.2	20.9	14.8	20.2
6	Coke Oven Battery	48.6	23.1	48.6	23.1	112.25*	23.8	52.2	25.6	50.2	24.1	48.5	24.2
7	Blast Furnace Stove	80.55*	19.63*	129.83 [*]	27.01*	274.6	67.4	275.6	63.4	282.1	67.7	253.29 [*]	27.97*

* Online CEMS monthly avg. value

Annexure-II

Report of Ambient Air Quality Monitoring

Month	Parameters	Unit	Limits as per CPCB	Exchange Yard	Project Office	Raw Water Treatment Plant	Main Gate
	PM 10		100	66.3	65.8	70.2	62.4
01 April	PM 2.5		60	38.4	38.8	44.2	38.1
2024	SO2	µg/M ³	80	10.6	7.8	9.5	9.6
	NOx		80	16.5	12.1	16.3	14.3
	CO	mg/M ³	2	1.8	1.6	1.8	2.1
	PM 10		100	66.9	66.3	69.1	62.8
	PM 2.5		60	38.7	39.1	43.5	38.3
04-05 April	SO2	µg/m⊃	80	10.5	7.5	9.3	9.8
2024	NOx		80	16.5	12.5	16.5	14.8
	CO	mg/M ³	2	1.9	1.2	1.7	1.8
	PM 10		100	67.5	68.7	73.5	63.6
09-10	PM 2.5		60	39.1	40.5	46.3	38.8
2024	SO2	µg/m¤	80	10.4	7.8	9.8	9.5
	NOx		80	16.3	12.3	16.2	14.5
	CO	mg/M ³	2	1.5	1.5	1.6	1.9
	PM 10		100	67.1	65.8	68.4	65.4
11-12	PM 2.5		60	38.9	38.8	43.1	39.9
2024	SO2	μg/ivi°	80	10.2	7.7	10.2	9.3
	NOx		80	16.8	12.2	16.8	15.1
	CO	mg/M ³	2	1.7	1.4	1.9	2.1
	PM 10		100	66.7	67.4	69.7	62.5
	PM 2.5		60	38.6	39.8	43.9	38.1
16 April 2024	SO2	µg/w	80	10.6	7.9	9.4	9.7
	NOx		80	16.5	12.1	16.4	14.7
	CO	mg/M ³	2	1.6	1.3	2.1	1.7
	PM 10		100	67.5	69.2	72.4	62.9
	PM 2.5		60	39.1	40.8	45.5	38.4
23-24 April	SO2	µg/m≌	80	10.7	7.6	11.1	9.2
2024	NOx		80	16.4	12.4	16.9	14.2
	CO	mg/M ³	2	1.7	1.5	1.8	1.9
	PM 10		100	67.4	67.4	72.1	66.7
25-26	PM 2.5		60	39	39.8	45.4	40.7
April 2024	SO2	µg/M ^o	80	10.3	7.7	9.4	9.4
	NOx		80	16.7	12.3	17.1	15.4
	СО	mg/M ³	2	1.8	1.4	1.7	1.9

Month	Parameters	Unit	Limits as per CPCB	Exchange Yard	Project Office	Raw Water Treatment Plant	Main Gate
	PM 10		100	64.7	62.8	67.9	61.4
01 May	PM 2.5		60	36.2	34.6	40.5	34.2
2024	SO2	µg/MS	80	10.4	7.4	9.1	9.5
	NOx		80	16.1	12.3	16.7	14.2
	CO	mg/M ³	2	1.6	1.4	1.6	1.6
	PM 10		100	64.2	60.6	62.9	62.6
	PM 2.5		60	36.9	35.7	35.4	34.5
06 May 2024	SO2	µg/m9	80	10.4	7.9	9.5	9.6
	NOx		80	16.3	11.8	17.1	15.1
	CO	mg/M ³	2	1.5	1.5	1.6	1.7
	PM 10		100	64.3	62.6	66.8	61.3
	PM 2.5		60	35.9	36.3	40.5	34.5
09 May 2024	SO2	µg/m9	80	10.8	8	9.6	9.7
2021	NOx		80	16.8	12.4	16.7	14.5
	CO	mg/M ³	2	1.7	1.5	1.8	1.9
	PM 10		100	64.1	63.6	67.4	60.8
	PM 2.5		60	36.9	36.4	40.3	35.1
14 May 2024	SO2	µg/M ^o	80	11.4	8	9.6	10.2
2024	NOx		80	16.9	12.5	17.1	15.1
	CO	mg/M ³	2	1.7	1.8	1.8	1.9
	PM 10		100	64.9	64.7	67.4	63.5
	PM 2.5	" • • 3	60	38.2	36.5	40.2	37.9
17 May 2024	SO2	µg/M ³	80	11.3	8	9.5	9.7
	NOx		80	16.8	12.6	16.7	14.6
	CO	mg/M ³	2	1.6	1.8	1.6	1.7
	PM 10		100	65.2	64.7	67.4	61.3
	PM 2.5		60	37.1	36.2	40.9	37.4
21 May	SO2	μg/M ³	80	10.9	8	9.5	9.9
2024	NOx		80	16.2	12.3	16.3	15.1
	СО	mg/M ³	2	1.6	1.7	1.8	1.6
	PM 10		100	64.6	65.1	66.9	61.8
24 May	PM 2.5	_{иа/М} З	60	36.2	36.9	40.4	36.3
2024	SO2	μ <u>9</u> /11	80	10.8	8	9.5	10.1
	NOx		80	16.3	12.3	16.7	15.2
	00	mg/M ³	2	1.7	1.5	1.6	1.7
00 M	PM 10		100	65.2	64.3	67.5	62.1
29 May 2024	PM 2.5	ua/M3	60	37.5	37.2	40.3	35.2
	SO2	F-9/-//	80	10.5	8	9.6	9.6
	NOx		80	16.9	12.5	16.6	14.5
	СО	mg/M ³	2	1.7	1.9	1.8	1.7

Month	Parameters	Unit	Limits as per CPCB	Exchange Yard	Project Office	Raw Water Treatment Plant	Main Gate
	PM 10		100	65.8	66.3	67.8	62.4
03 June	PM 2.5		60	37.4	39.2	40.5	38.1
2024	SO2	µg/we	80	10.3	7.9	9.8	9.6
	NOx		80	16.7	12.3	16.5	14.7
	CO	mg/M ³	2	1.5	1.5	1.9	1.7
	PM 10		100	58.4	54.3		55.2
08 June	PM 2.5	ua/M3	60	33.4	31.2	Conducted	32.4
2024	SO2	P. 9 ,	80	8.8	6.5	another day	8.7
	NOx		80	12.3	10.1		12.6
	CO	mg/M ³	2	1.4	1.3		1.3
	PM 10		100	66.7	66.2	69.4	62.5
10 Juno	PM 2.5	ца/мЗ	60	38.4	38.9	43.6	38.4
2024	SO2	μg/we	80	10.8	7.9	9.4	9.9
	NOx		80	16.4	12.2	16.6	14.8
	CO	mg/M ³	2	1.7	1.7	1.8	1.8
	PM 10		100	67.5	66.3	69.2	63.5
20 Juno	PM 2.5	3	60	38.8	39.2	43.4	38.6
20 June 2024	SO2	µg/ms	80	10.9	7.9	9.2	9.7
	NOx		80	16.8	12.4	16.3	14.5
	CO	mg/M ³	2	1.9	1.8	1.9	1.7
	PM 10		100	Conducted	66.1	68.8	61.7
26 June	PM 2.5	µg/M ³	60		39.1	43.1	37.7
2024	SO2		80	another day	7.6	9.2	9.8
	NOx		80		12.1	16.7	14.6
	CO	mg/M ³	2		1.7	1.8	1.8
	PM 10		100	65.2	54.3	56.2	62.5
04 July	PM 2.5		60	37.6	31.2	37.1	38.2
2024	SO2	µg/m°	80	10.2	6.5	8.2	9.9
	NOx		80	16.8	10.1	15.1	14.8
	CO	mg/M ³	2	1.4	1.3	1.2	1.8
	PM 10		100	66.3	66.2	64.2	55.4
11 July	PM 2.5		60	38.4	38.9	42.3	32.3
2024	SO2	µg/M ³	80	10.5	7.9	9.1	8.8
	NOx		80	17.8	12.2	16.2	12.3
	CO	mg/M ³	2	1.8	1.7	1.9	1.2

Month	Parameters	Unit	Limits as per CPCB	Exchange Yard	Project Office	Raw Water Treatment Plant	Main Gate
	PM 10		100	64.9	66.3	62.6	62.6
10 h.h.	PM 2.5		60	37.2	39.2	42.2	38.1
2024	SO2	μg/M ³	80	10.7	7.9	9.2	9.8
	NOx		80	16.7	12.4	16.0	14.2
	CO	mg/M ³	2	1.5	1.8	1.8	1.7
	PM 10		100	62.6	66.1	62.7	63.2
OF July	PM 2.5		60	37.1	39.1	42.3	38.4
25 July 2024	SO2	ug/M3	80	10.5	7.6	9.3	9.8
	NOx	μg/m°	80	16.4	12.1	16.4	14.3
	СО	mg/M ³	2	1.4	1.7	1.9	1.6
	PM 10		100	64.8	64.2	62.8	60.6
	PM 2.5		60	38.2	37.9	42.3	37.8
05 Aug 2024	SO2	ца/мЗ	80	11.5	7.6	9.5	9.8
	NOx	μ9/10	80	16.2	11.9	16	14.6
	СО	mg/M ³	2	1.7	1.7	1.9	1.8
	PM 10		100	66.1	65.8	64.5	54.8
	PM 2.5		60	38.2	38.2	41.8	32.1
14 Aug	SO2		80	10.5	7.8	9.3	8.7
2024	NOx	μg/m°	80	16.2	12.1	16.8	12.2
	СО	mg/M ³	2	1.7	1.8	1.7	1.21
	PM 10		100	64.2	64.7	62.2	61.5
00.0	PM 2.5		60	37.4	38.5	41.2	37.7
20 Aug 2024	SO2	µg/m9	80	10.8	7.9	9.1	9.5
	NOx		80	16.9	12.3	16.2	14.1
	СО	mg/M ³	2	1.7	1.8	1.9	1.8
	PM 10		100	58.3	31.2	57.5	59.4
	PM 2.5		60	33.6	35.4	37.5	36.4
29 Aug 2024	SO2	hð\W2	80	8.7	7.1	8.7	9.4
	NOx		80	12.1	10.3	15.1	14.1
	СО	mg/M ³	2	1.4	1.5	1.4	1.6

Loc	Location: Sinter Plant Office										
SI	Date	PM 10 (μg/M₃)	PM 2.5 (µg/M₃)	SO2 (μg/M3)	NOX (µg/M3)	CO (mg/M3)					
1	11-04-2024	68.7	39.7	14.7	17.2	1.7					
2	16-05-2024	68.2	39.5	14.5	17.1	1.8					
3	21-06-2024	67.8	38.7	14.3	16.7	1.6					
4	18-07-2024	66.2	38.1	14.4	16.2	1.7					
5	22-08-2024	63.5	36.9	13.2	15.8	1.6					

Month	Parameters	Unit	Limits as per CPCB	Exchange Yard	Project Office	Raw Water Treatment Plant	Main Gate	Sinter Plant Office
	PM 10		100	62.1	66.3	60.4	62.6	
04 Sep	PM 2.5	µg/M ³	60	35.2	39.2	38.4	38.1	Conducted
2024	SO2		80	8.8	7.9	9.8	9.8	another
	NOx		80	12.3	12.4	15.4	14.2	day
	CO	mg/M ³	2	1.5	1.8	1.7	1.7	
	PM 10		100	60.5	66.1	62.5	63.2	60.4
06 Sep	PM 2.5	µg/M ³	60	34.8	39.1	39.1	38.4	35.8
2024	SO2		80	9.2	7.6	9.2	9.8	7.4
	NOx		80	13.5	12.1	14.8	14.3	11.9
	СО	mg/M ³	2	1.5	1.7	1.8	1.6	1.4
	PM 10		100	59.5	64.2	60.9	60.6	61.2
10 Sep	PM 2.5	µg/M ³	60	33.9	37.9	36.6	37.8	36.1
2024	SO2		80	9.3	7.6	10.1	9.8	7.5
	NOx		80	14.2	11.9	16.3	14.6	11.8
	CO	mg/M ³	2	1.7	1.7	1.9	1.8	1.5
	PM 10		100	63.6	65.8	59.7	54.8	58.6
13 Sep	PM 2.5	µg/M ³	60	36.5	38.2	38.5	32.1	35.1
2024	SO2		80	9.5	7.8	8.8	8.7	7.2
	NOx		80	15.1	12.1	15.8	12.2	11.7
	CO	mg/M ³	2	1.6	1.8	1.6	1.21	1.4
	PM 10		100	62.5	64.7	63.1	61.5	60.3
18 Sep	PM 2.5	µg/M ³	60	35.1	38.5	40.2	37.7	36.4
2024	SO2		80	9.1	7.9	9.3	9.5	7.3
	NOx		80	14.9	12.3	15.9	14.1	11.9
	CO	mg/M ³	2	1.8	1.8	1.7	1.8	1.3
	PM 10		100	65.1	61.2	64.4	59.4	61.1
20 Sep	PM 2.5	µg/M ³	60	35.8	35.4	41.3	36.4	36.7
2024	SO2		80	9.1	7.1	10.5	9.4	67.7
	NOx		80	13.5	10.3	17.2	14.1	12.8
	CO	mg/M ³	2	1.5	1.5	1.8	1.6	1.5
	PM 10		100	59.5	64.7	63.7	63.2	62.3
26 Sep	PM 2.5	µg/M ³	60	33.1	38.5	41.5	38.4	36.9
2024	SO2		80	8.8	7.9	9.3	9.8	7.4
	NOx		80	13.7	12.3	18.4	14.3	12.6
	CO	mg/M ³	2	1.6	1.8	1.7	1.6	1.5

Annexure-III

Details of Air Pollution Control System

Sn	Junction House	System No.	Control Equipment	Capacity inM ³ /Hr					
			· · · · ·						
Α	Pulse Jet Bag Filter Based De Dusting S	ystem-Blast Furnace &	& RMHS Area						
	Stock House & FJ-1	Dedusting Unit-14	Pulse Jet Bag Filter	4,00,000					
	Junction house J8	Dedusting Unit-6	Pulse Jet Bag Filter	62,000					
	Junction house J17	Dedusting Unit-10	Pulse Jet Bag Filter	55,000					
	Junction house J11	Dedusting Unit-15	Pulse Jet Bag Filter	3,600					
	Junction house J11A	Dedusting Unit-16	Pulse Jet Bag Filter	4,200					
в	Pulse Jet Bag Filter Based De Dusting System-RMHS Area								
	Fuel & Flux Crushing Building		Dry Fog System						
	Junction house J12	Dedusting Unit-3 Pulse Jet Bag Filter		15,000					
	Junction house J13	Dedusting Unit-4	Pulse Jet Bag Filter	15,000					
С	Pulse Jet Bag Filter Based De Dusting S	ystem- Coke Oven Are	ea						
	Coke Dry Cooling Plant	Dedusting Unit-1	Pulse Jet Bag Filter	66,000					
	Coal discharge point & coal crushing unit	Dedusting Unit-2	Pulse Jet Bag Filter	15,000					
	Coke Sorting Plant (Coke discharge point from CDCP)	Dedusting Unit-3	Cyclone separator & Pulse Jet Bag Filter	65,000					
	Coke Crushing Section	Dedusting Unit-4	Pulse Jet Bag Filter	60,000					
	Coke Sorting Station	Dedusting Unit- 5	Pulse Jet Bag Filter	60,000					
	Coke Breeze Bunker	Dedusting Unit- 6	Pulse Jet Bag Filter	40,000					
D	ESP based De-dusting System of Ent	tire Sinter Plant Com	plex						
	Plant main building, Raw Feed Proportionin Screening Building, Transfer Station 1 & 2, Building	ng Building,Cold Sinter Mixing & Nodulizing	ESP based De-dusting system	7,30,000					
Е	ESP Based Waste Gas Cleaning System	for Sinter Machine							
	Waste Gas Cleaning of Sinter Machine		ESP based De-dusting system	10,26,000					
F	Dust Suppression System of RMHS Are	а							
	Water based Dust Suppression System for	Stockpile	DS System	70					
	Dedusting Suppression System at Ore Wag	gon Tippler	DS System	10					
	Dedusting Suppression System at Coal Wa	agon Tippler	DS System	10					
G	Steel Melting Shop								
	Suppressed Combustion System	BOF Converter	Moveable Skirt	64,000					
	Ladle Heating Furnace Fume	Dedusting unit	Pulse Jet Bag Filter	1,34,500					
Н	Gas Cleaning Plant (GCP)								
	Blast Furnace	Furnace BF GCP Dust Catcher, V		1,95,000					
	BOF Gas	BOF GCP	Wet Scrubber	64,000					

Annexure-IV

Fugitive Emission Detail

Month			Work Area	PM 10 Mg/M3			
			Left Collecting Conveyor (C21) [material Iron Ore Additive]	0.647			
			Right Sinter Screen (Bunker No10)	1.201			
			Left Sinter Screen (Bunker No6)	3.025			
	Plact	BF Stock House	Quartz (No.4) & Nut Coke (No. 1) Hopper Discharge	0.804			
	Furnace		No-5 Iron Ore (I/O) Left Vibro Feeder	1.349			
			Left Coke Screen (Bunker No3)	1.583			
		Skip Pit	Pit Skip Top Area				
			Cast house- 1	2.871			
		Cast house	Cast house- 2	0.139			
			D510 conveyor receiving chute	2.5			
		ACP	M017 Chain conveyor Discharge point	2.396			
		GCP	D490 convevor receiving chute	1.607			
			Sinter machine discharge	2.577			
May 2024		Sinter Machine	D490 Discharge chute	2.224			
way 2024	Sinter Plant		Cooler Discharge chute	2.993			
		Cooler	C080 convevor receiving chute	2.702			
			C070 convevor discharge chute	2.528			
			F030 vertical cute receiving chute	2.544			
		Screen	F010 conveyor receiving chute	3.098			
			F020 conveyor receiving chute	2.751			
			D495 conveyor discharge chute	1.566			
		RFPB	A010 Conveyor Receiving chute	2.726			
			G010 conveyor receiving chute	2.86			
			SP4 conveyor receiving chute	1.711			
			D520 conveyor discharge chute	2.971			
		Transfor station 2	D510 conveyor receiving chute	1.599			
		Transfer station 2	D510 conveyor Discharge chute	2.382			
		Junction house 18	F030 conveyor discharge	3.572			
			Left Collecting Conveyor (C21) [material Iron Ore	0.4			
			Right Collecting Conveyor (C11) [material Iron Ore	0.677			
			No.8 Pellet Vibro Feeder	3.557			
			No.11 Iron Ore Right Vibro Feeder	2.471			
			Right Sinter Screen (Bunker No10)	1.084			
	Blast	BF Stock House	Left Sinter Screen (Bunker No6)	1.358			
	Furnace		Quartz (No.4) & Nut Coke (No. 1) Hopper Discharge	0.468			
			Pellet (No.2) Vibro Feeder	0.389			
Jun 2024			No-5 Iron Ore (I/O) Left Vibro Feeder	2.806			
			Lett Coke Screen (Bunker No3)	1.335			
			No-12 (Dolomite) & No9 Limestone (L/S)	3.831			
		Cast house	Cast house- 1	3.647			
			Cast nouse- 2	0.858			
		ACP	D510 conveyor receiving chute	2.582			
	Sinter Plant		NUT7 Chain conveyor Discharge point	0.669			
		GCP	D490 conveyor receiving chute	0.248			

			Sinter machine discharge	0.37
		Sinter Machine	Hot sinter breaker	0.116
			D490 Discharge chute	1.548
			Cooler Discharge chute	0.434
		O a share	Apron feeder Receiving chute	0.602
		Cooler	C080 conveyor receiving chute	1.482
			C070 conveyor discharge chute	2.498
			F030 vertical cute receiving chute	0.66
			F010 conveyor receiving chute	0.366
		Screen	F020 conveyor receiving chute	0.703
			D495 conveyor discharge chute	0.403
			G010 conveyor receiving chute	0.361
		RFPB	SP4 conveyor receiving chute	0.65
			D510 conveyor receiving chute	1.452
		Transfer station 2	D510 conveyor Discharge chute	1.069
			Left Collecting Conveyor (C21) [material Iron Ore	2.2
			Right Collecting Conveyor (C11) [material Iron Ore	1.588
			No.11 Iron Ore Right Vibro Feeder	2.591
			Left Sinter Screen (Bunker No6)	2.978
			Quartz (No.4) & Nut Coke (No. 1) Hopper Discharge	0.877
	Blast	BF Stock House	Pellet (No.2) Vibro Feeder	2.67
	Furnace	Cast house	No-5 Iron Ore (I/O) Left Vibro Feeder	2.492
			Left Coke Screen (Bunker No3)	3.471
			Right Coke Screen (Bunker No7)	2.008
			No-12 (Dolomite) & No9 Limestone (L/S)	1.781
			Cast house- 1	0.87
			Cast house- 2	0.772
		ACP	D510 conveyor receiving chute	0.656
			M017 Chain conveyor Discharge point	0.539
		GCP	D490 conveyor receiving chute	0.48
		Sinter Machine	Sinter machine discharge	0.537
			Hot sinter breaker	0.506
			D490 Discharge chute	1.895
Jul 2024			Cooler receiving chute	3.47
			Cooler Discharge chute	0.349
		Cooler	Apron feeder Receiving chute	1.102
			C080 conveyor receiving chute	0.378
			C070 conveyor discharge chute	0.588
	Sinter Dlant		F030 vertical cute receiving chute	0.533
	Sinter Plant	Corroom	F010 conveyor receiving chute	0.614
		Screen	F020 conveyor receiving chute	0.39
			D495 conveyor discharge chute	0.419
			A010 Conveyor Receiving chute	0.457
		DEDD	G010 conveyor receiving chute	0.521
		КГРВ	SP4 conveyor receiving chute	0.855
			D520 conveyor discharge chute	0.412
		Tropofor station 2	D510 conveyor receiving chute	0.442
		Transfer station 2	D510 conveyor Discharge chute	0.299
			F030 conveyor discharge	1.098
		Junction house 18	F050 Movable chute	0.491
			F040 conveyor receiving	0.576

			Left Collecting Conveyor (C21) [material Iron Ore	0.813
			Right Collecting Conveyor (C11) [material Iron Ore	1.695
			No.8 Pellet Vibro Feeder	1.526
			No.11 Iron Ore Right Vibro Feeder	1.425
			Right Sinter Screen (Bunker No10)	1.002
		BF Stock House	Left Sinter Screen (Bunker No6)	1.037
	Blast		Quartz (No.4) & Nut Coke (No. 1) Hopper Discharge	0.662
	Furnace		Pellet (No.2) Vibro Feeder	0.507
			No-5 Iron Ore (I/O) Left Vibro Feeder	0.524
			Left Coke Screen (Bunker No3)	0.679
			No-12 (Dolomite) & No9 Limestone (L/S)	1.341
			Skip Pit Discharge Area	3.609
		Skip Pit	Skip Top Area	1.126
		- • ·	BLT Receiving Hopper Area	0.633
			D510 conveyor receiving chute	0.744
		ACP	M017 Chain conveyor Discharge point	0.366
		GCP	D490 conveyor receiving chute	0.242
			Sinter machine discharge	0.308
		Sinter Machine	Hot sinter breaker	0.187
Aug 2024			D490 Discharge chute	0.73
			Cooler receiving chute	0.36
	Sinter Plant	Cooler Screen RFPB	Cooler Discharge chute	1.187
			Apron feeder Receiving chute	0.389
			C080 conveyor receiving chute	0.496
			C070 conveyor discharge chute	0.463
			E030 vertical cute receiving chute	0.385
			F010 conveyor receiving chute	0.491
			F020 conveyor receiving chute	0.773
			D495 conveyor discharge chute	0.392
			A010 Conveyor Receiving chute	0.523
			G010 conveyor receiving chute	0.394
			SP4 conveyor receiving chute	0.434
			D520 conveyor discharge chute	0.63
			D510 conveyor receiving chute	0.643
		Transfer station 2	D510 conveyor Discharge chute	0.744
			F030 conveyor discharge	1.842
		Junction house 18	J8C5 conveyor receiving	1.204
			F040 conveyor receiving	0.435
			Left Collecting Conveyor (C21) [material Iron Ore	0.696
			Right Collecting Conveyor (C11) [material Iron Ore	2.437
			No.11 Iron Ore Right Vibro Feeder	1.782
			Right Sinter Screen (Bunker No10)	2.684
		BF Stock House	Left Sinter Screen (Bunker No6)	0.615
			Quartz (No.4) & Nut Coke (No. 1) Hopper Discharge	0.447
Son 2024	Blast		No-5 Iron Ore (I/O) Left Vibro Feeder	0.426
3ep 2024	Furnace		Left Coke Screen (Bunker No3)	0.885
			No-12 (Dolomite) & No9 Limestone (L/S)	1.309
			Skip Top Area	0.623
		Skip Pit	BLT Receiving Hopper Area	1.016
			Cast house- 1	3.334
		Cast house	Cast house- 2	1.102

	ACP	D510 conveyor receiving chute	0.665
	ACF	M017 Chain conveyor Discharge point	0.711
	GCP	D490 conveyor receiving chute	0.423
		Sinter machine discharge	0.703
	Sinter Machine	Hot sinter breaker	0.446
		D490 Discharge chute	1.089
		Cooler receiving chute	1.158
		Cooler Discharge chute	1.535
	Cooler	Apron feeder Receiving chute	0.732
		C080 conveyor receiving chute	0.526
		C070 conveyor discharge chute	0.681
Sinter Plant	Screen	F030 vertical cute receiving chute	0.526
		F010 conveyor receiving chute	1.148
		F020 conveyor receiving chute	0.64
		A010 Conveyor Receiving chute	0.721
	DEDD	G010 conveyor receiving chute	0.707
	KFFD	SP4 conveyor receiving chute	0.425
		D520 conveyor discharge chute	0.456
	Transfor station 2	D510 conveyor receiving chute	1.808
		D510 conveyor Discharge chute	0.59
	Junction house 18	F030 conveyor discharge	2.863
		J8C5 conveyor receiving	1.176
		F040 conveyor receiving	0.856

Annexure-V

Month	Parameters	Unit	Standard	Plant Outfall
	pН		5.5-9.0	7.5
	Colour			<1.0
	Odour			Agreeable
	Suspended Solid	mg/l	100	1.4
	Oil & Grease	mg/l	10	<1
Apr 2024	Iron as Fe	mg/l	3	0.35
	Phenol	mg/l	1	<0.5
	Cyanide (as CN)	mg/l	0.2	<0.02
	BOD	mg/l	30	6.0
	COD	mg/l	250	30
	Ammoniacal Nitrogen	mg/l	50	2.24
	рН		5.5 to 9.0	7
	Colour		-	BDL (DL: 1.0)
	Odour		-	Agreeable
	Suspended Solid	mg/l	100	< 2.5
	Oil & Grease	mg/l	10	< 1
May 2024	Iron as Fe	mg/l	3	0.2
	Phenol	mg/l	1	< 0.001
	Cyanide (as CN)	mg/l	0.2	< 0.02
	BOD	mg/l	30	7
	COD	mg/l	250	32
	Ammoniacal Nitrogen	mg/l	50	1.96
	рН		5.5 to 9.0	8
	Colour			BDL (DL: 1.0)
	Odour			Agreeable
	Suspended Solid	mg/l	100	4.8
	Oil & Grease	mg/l	10	< 1
June 2024	Iron as Fe	mg/l	3	0.34
	Phenol	mg/l	1	< 0.5
	Cyanide (as CN)	mg/l	0.2	< 0.02
	BOD	mg/l	30	1.5
	COD	mg/l	250	6
	Ammoniacal Nitrogen	mg/l	50	2.24

Report of Analysis of Plant Outfall

Month	Parameters	Unit	Standard	Plant Outfall
	рН		5.5 to 9.0	8
	Colour			<1.0
	Odour			Agreeable
	Suspended Solid	mg/l	100	4.6
	Oil & Grease	mg/l	10	< 1
July 2024	Iron as Fe	mg/l	3	0.6
	Phenol	mg/l	1	< 0.5
	Cyanide (as CN)	mg/l	0.2	< 0.02
	BOD	mg/l	30	4
	COD	mg/l	250	14
	Ammoniacal Nitrogen	mg/l	50	2.8
	рН		5.5 to 9.0	8.19
	Colour			BDL (DL: 2.0)
	Odour			Agreeable
	Suspended Solid	mg/l	100	BDL (DL: 2.5)
	Oil & Grease	mg/l	10	BDL (DL: 3.0)
Aug 2024	Iron as Fe	mg/l	3	BDL (DL: 0.05)
	Phenol	mg/l	1	BDL (DL:0.001)
	Cyanide (as CN)	mg/l	0.2	BDL (DL: 0.02)
	BOD	mg/l	30	BDL (DL: 2.0)
	COD	mg/l	250	BDL (DL: 4.0)
	Ammoniacal Nitrogen	mg/l	50	BDL (DL: 0.1)
	рН		5.5 to 9.0	7.69
	Colour			BDL(DL:2.0)
	Odour			Agreeable
	Suspended Solid	mg/l	100	BDL(DL:2.5)
	Oil & Grease	mg/l	10	BDL(DL:3.0)
Sep 2024	Iron as Fe	mg/l	3	0.5
	Phenol	mg/l	1	BDL(DL:0.001)
	Cyanide (as CN)	mg/l	0.2	BDL(DL:0.02)
	BOD	mg/l	30	5.6
	COD	mg/l	250	19.8
	Ammoniacal Nitrogen	mg/l	50	BDL(DL:0.1)

Annexure-VI

Report of Analysis of Effluent Treatment Plant

			BF ETP	BOF ETP	
Month	Parameters Unit		(Thickener Outlet)	(Thickener Outlet)	
	рН		6.85	12.46	
A	Suspended Solid	mg/l	23.31	23.04	
Apr 2024	TDS	mg/l	908.69	2238.43	
	Turbidity (NTU)	mg/l	25.79	24.54	
	рН		6.82	12.17	
May 2024	Suspended Solid	mg/l	28.28	30.71	
	TDS	mg/l	1062.59	3612.36	
	Turbidity (NTU)	mg/l	31.03	34.86	
	рН		6.64	12.16	
Jun 2024	Suspended Solid	mg/l	24.07	37.79	
	TDS	mg/l	775.17	2965.82	
	Turbidity (NTU)	mg/l	29.62	44.61	
	рН		6.72	12.22	
July 2024	Suspended Solid	mg/l	19.82	33.15	
	TDS	mg/l	662.82	3073.35	
	Turbidity (NTU)	mg/l	25.11	36.60	
	рН		6.7	12.13	
Aug 2024	Suspended Solid	mg/l	23.2	27.96	
	TDS	mg/l	752.4	3055.89	
	Turbidity (NTU)	mg/l	25.7	32.81	
	рН		6.7	12.12	
Sep 2024	Suspended Solid	mg/l	25.4	35.63	
	TDS	mg/l	671.1	2473.37	
	Turbidity (NTU)	mg/l	28.4	39.42	

NB: Effluents are not discharged; it is recycled completely in the circuit.

Annexure-VII

Report of Analysis of BOD Treated Effluent

				BOD ETP
Month	Parameters	Unit	Standard	(Treated Effluent)
	рН		5.5 to 9.0	7.81
	Suspended Solid	mg/l	100	37.82
Apr 2024	BOD	mg/l	30	15.50
	COD	mg/l	250	166.67
	рН		5.5 to 9.0	7.96
May 2024	Suspended Solid	mg/l	100	40.38
	BOD	mg/l	30	16.60
	COD	mg/l	250	178.80
	рН		5.5 to 9.0	7.71
Jun 2024	Suspended Solid	mg/l	100	39.38
	BOD	mg/l	30	17.43
	COD	mg/l	250	170
	рН		5.5 to 9.0	7.52
July 2024	Suspended Solid	mg/l	100	45.55
	BOD	mg/l	30	17.38
	COD	mg/l	250	194.19
	рН		5.5 to 9.0	7.63
Aug 2024	Suspended Solid	mg/l	100	48.86
	BOD	mg/l	30	17.21
	COD	mg/l	250	170.65
	рН		5.5 to 9.0	7.67
Sep 2024	Suspended Solid	mg/l	100	44.86
	BOD	mg/l	30	15.16
	COD	mg/l	250	168.67

Annexure-VIII

	Apr-24							
SI.	Description	1	2	3	4	Average		
1	Compressor House Control Room	69.5	72	70	68.6	70.03		
2	Power Plant Control Room	62.3	64.7	61.3	60.7	62.25		
3	BF Control Room	65.8	63	69.1	59.9	64.45		
4	CWPH Control Room	67.3	70.5	67.6	72	69.35		
5	Sinter Plant Control Room	60.9	64.6	64.2	64	63.43		
6	SMS Converter Floor 8 mtr	77.3	79.6	78.9	82.3	79.53		
7	SMS CCP	71.8	73.3	72.1	78.4	73.90		
8	SMS LHF	75.1	75.2	77.2	83.5	77.75		
9	Oxygen Plant Control Room	57.9	58.5	58.6	59.3	58.58		
10	CDCP Control Room	64.9	73.6	69.2	76.1	70.95		
11	Battery Heating Control Room	69	66.8	65.9	65.5	66.80		
12	Exhauster House Control Room	71.5	70.1	70.8	59.9	68.08		

Report of Monitoring of Noise

	May-24								
SI.	Description	1	2	3	4	Average			
1	Compressor House Control Room	76.8	70.1	72	70.6	72.38			
2	Power Plant Control Room	63.5	62.8	64.6	66.7	64.40			
3	BF Control Room	64.3	63	64.9	62.8	63.75			
4	CWPH Control Room	67.7	68.9	71.1	73.9	70.40			
5	Sinter Plant Control Room	70.2	65.9	71	64	67.78			
6	SMS Converter Floor 8 mtr	81.5	78.7	76.4	73.8	77.60			
7	SMS CCP	70.5	79.5	68.6	76.1	73.68			
8	SMS LHF	65.6	61.6	62.8	68	64.50			
9	Oxygen Plant Control Room	60.2	61	63.3	60.7	61.30			
10	CDCP Control Room	63.1	80	73.8	70.5	71.85			
11	Battery Heating Control Room	66.7	67.6	62.2	65.1	65.40			
12	Exhauster House Control Room	70.2	72.3	71.7	73.1	71.83			

	Jun-24							
SI.	Description	1	2	3	4	Average		
1	Compressor House Control Room	86.2	75.4	72.5	72.8	76.73		
2	Power Plant Control Room	68	65.9	65.1	69.8	67.20		
3	BF Control Room	72.2	69.9	62.2	67.5	67.95		
4	CWPH Control Room	80.3	71.7	70.4	73.6	74.00		
5	Sinter Plant Control Room	65.1	65.2	69.7	64.7	66.18		
6	SMS Converter Floor 8 mtr	78.5	76.3	75.2	69.8	74.95		
7	SMS CCP	69.3	68	72.7	69.2	69.80		
8	SMS LHF	67.7	69.6	67.8	68.1	68.30		
9	Oxygen Plant Control Room	59.8	61.1	63.4	58.8	60.78		
10	CDCP Control Room	60.2	61.1	60.7	61.4	60.85		
11	Battery Heating Control Room	66.4	63.2	63.9	65.7	64.80		
12	Exhauster House Control Room	69.4	76.2	79.6	77.7	75.73		

		Jul-24				
SI.	Description	1	2	3	4	Average
1	Compressor House Control Room	69.4	70.1	69.5	72.5	70.38
2	Power Plant Control Room	64.3	65.7	63.7	62.9	64.15
3	BF Control Room	63.1	59.8	64.7	63.1	62.68
4	CWPH Control Room	62.1	66.8	68.7	64.2	65.45
5	Sinter Plant Control Room	72.1	65.2	88.4	70.8	74.13
6	SMS Converter Floor 8 mtr	76	77.7	68.9	75.4	74.50
7	SMS CCP	70.5	71.1	77.3	72.2	72.78
8	SMS LHF	76.1	80.6	62.5	75.3	54.60
9	Oxygen Plant Control Room	59.1	63.7	105.7	61.8	72.58
10	CDCP Control Room	61.1	66.7	64.5	66.5	64.70
11	Battery Heating Control Room	60.1	61.8	60.9	59.3	60.53
12	Exhauster House Control Room	74.9	76.1	72.6	71.3	73.73

Aug-24						
SI.	Description	1	2	3	4	Average
1	Compressor House Control Room	69.9	71.4	75.9	70.4	71.90
2	Power Plant Control Room	63.5	65.7	64.7	67.2	65.28
3	BF Control Room	61.4	58.3	60.6	62.8	60.78
4	CWPH Control Room	67.8	71.2	69.5	70.6	69.78
5	Sinter Plant Control Room	64.4	70.2	68.9	63.7	66.80
6	SMS Converter Floor 8 mtr	72.6	77.2	75.4	78	75.80
7	SMS CCP	71	68.9	70.7	68.4	69.75
8	SMS LHF	82.9	72.5	67.3	71.9	73.65
9	Oxygen Plant Control Room	60.4	62	63.5	59.8	61.43
10	CDCP Control Room	62.4	68.7	78	67.7	69.20
11	Battery Heating Control Room	71	66.4	80.8	68.3	71.63
12	Exhauster House Control Room	73.1	75.6	72.4	69.8	72.73

Sep-24						
SI.	Description	1	2	3	4	Average
1	Compressor House Control Room	73.1	74	75.6	76.1	74.70
2	Power Plant Control Room	75.8	68.6	66.5	70.1	70.25
3	BF Control Room	63.6	57.9	60.2	65.1	61.70
4	CWPH Control Room	70.7	69.3	67.9	66.5	68.60
5	Sinter Plant Control Room	72.5	66.3	66.1	64.9	67.45
6	SMS Converter Floor 8 mtr	75.4	73.8	76.8	78.6	76.15
7	SMS CCP	68.5	70.7	74.7	66.8	70.18
8	SMS LHF	70.7	75.9	77.9	67.5	73.00
9	Oxygen Plant Control Room	59	64.3	62.3	59.5	61.28
10	CDCP Control Room	69.8	66.6	68.6	66	67.75
11	Battery Heating Control Room	65.3	66.2	63.9	73.8	67.30
12	Exhauster House Control Room	77.2	74.1	76.2	72.8	75.08

Annexure-IX

CSR Activity highlights

After takeover of Neelachal Ispat Nigam Limited by Tata Steel Long Products Limited, CSR activities are centrally being coordinated by Tata Steel Foundation. Various socio-economic development programs covering livelihood, education, safe drinking water, sports, health care etc. have been undertaken in surrounding areas of plant. Tata Steel Foundation has undertaken the following initiatives in NINL operational area comprising the Gram Panchayats, Salijanga, Duburi, Baragadia, Ollal, Nadiabhanga, Ranagudni, Sarganpur, Gobardhanpur, Dhuligarh and Chitri through different interventions.

Program Head	Major Intervention / Remarks			
	 a) Skill development training like a) Ophthalmic Nurse Assistant training, b) 3 years Diploma Training in Manufacturing technology, c) Master Chef Training, d) Sewing Machine Operator training through 100% placement assurance is being provided to local youth. b) training programs are being arranged to SHG members (Self Help Group) with essential skills in areas like food preparation, agarbati making, and household disinfectants. Agricultural supports through following are being provided to local farmers. 1. Promotion of Climate-Resilient Agricultural Practices- To cope with the climate related shocks, 			
Agriculture & Livelihood	 Crop Diversification, Promotion of new crops etc Promotion of Organic Farming- To reduce the input cost & promote sustainability, organic farming had been promoting in the Peripheral Areas Promotion of Model Vegetable Farming through Mulching & Trellis: - Promotion of vegetable farming as a 2nd Crop and 3rd Crop has been introduced Mulching & Trellis technology to the farmers through various village level and farm level training program excavation of farm ponds for irrigation support, solar based irrigation scheme poultry, duckery, rearing of goats Promotion of Inland Fish Farming nursery Soil testing and issuing certificate System of Rice Intensification (SRI) Marker has been distributed to 18 Krushak Sanghas at NINL Cluster. Integrated Farming System (IFS) – By promotion of fish farming with vegetable farming, fruit plantation and duckery have been introduced with 15 farmers 			
Water Harvesting Structures	 To stores rainwater for irrigation, ensuring water availability during dry periods several ponds have been constructed and existing ponds were renovated. Total 26 Nos of Ponds constructed, and two number of ponds had been renovated from April 2023 to September 2024 Earthen Check dam (ECD) has been completed at Fuljhar & it will be helped to irrigation above 80-100 acres of land. 			
Gender and Community Enterprise	 1. 150 Women members were covered under Leadership Development training under Project DISHA. 2. Approx 1019 members covered through 84 nos Monthly SHG, CLF & GPLF meeting. 3. 743 nos of women members participated in panchayat level women day programme. 4. Bag making activity, Ration supply for Nikshyamitra prog & Badi making activity 			

	1. Pre-matric coaching class is being conducted at four schools (Salijanga High School, Salijanga,
	Panchayat High School, Ollala, Tapovan Government Girls School, Rampilo & Budhraj High
	School Danagadi).
	2. Jyoti Fellowship is being provided to meritorious students from economically backward
	Scheduled Caste and Scheduled Tribe families to enable them to accomplish educational and
Education	career aspirations. 5 schools in Kalinga Nagar area are covered under this program.
	3. Education Signature Program was initiated in January 2015, aimed at universalizing education
	in line with the Right to Education Act. In Jaipur, the project operates in Danagadi block
	4. Youths are receiving training at NIIT center at Duburi in Basic IT and Spoken English Course.
	5. Running 42 tribal language (Warang Chiti and Ol Chikki) and Literature classes at Salijanga.
	Sarngapur. Nadiabhanga and Ollal Panchavat.
	1 Construction of New Classroom at Nilachal High School Nadiabhanga Ollala LIP Project
	School Khandra LIP school & Duburi College have been completed for conducive learning
	environment
	2 Construction of Hospital Building at Primary Health Contro (BHC). Duburi has been completed
	2. Construction of Hospital Building at Finnary Health Centre (FHC), Dubuit has been completed
	3. Weil-ness park constructed and inaugurated at Dubun.
Infrastructure &	4. Completed construction of Public toilet at Danagadi
	5. Completed Anganwadi Center at Kulapitna & Construction of Anganwadi center at Gnatisani,
	Ranagundi is going on
	6. Renovation of Community Center at Bajrapalli is undergoing.
	7. Construction of road at Baragadia is undergoing.
	8. 4 High Mast Tower at Baragadia and Salijanga and Six Solar Lights at Hadi Sahi, Baragadia
	have been installed.
	1. Drinking water facility through installation of New Hand Tube Well at Baragadia, Chitri,
	Gobardhanpur, Nadiabhanga, Ollala, Salijanga & Sarangpur. Total 19 new hand tube well
	installed and 30 have repaired. Pipe Water Supply System at UGME, Sarangpur
	2. Two nos. deep bore based drinking water system have been provided at Sarangpur. It will be
	impacted around 800 no. of people.
Hoolth & Drinking	3. Screening and awareness of Non -Communicable Disease (Diabetes, Hypertension, Oral
Water	cancer, Breast Cancer.) and Vector Borne Disease (VBD) (Screening fever and Raising
	awareness about VBD) have been conducted with 17,665 people.
	4. Mobile Public Health Unit is operating in almost all panchayats.
	5. Nutrition program, basic life support training is provided to local population.
	6. 252 nos. cataract screening done & 13 cataract surgery was undertaken.
	7. RISHTA a project for reducing child marriages and promoting adolescent reproductive sexual
	health has been actively undertaken
	1. 5 different centers (Athletic Training Center, Youth Development Center & Football Training
	Center) has been developed which regularly provide training of Football and Athletics
Sporto	2. Organized AFC Grassroot Football Festival at Jamposi on 15 th May 2024- 170 trainees had been
Shous	participated in this program.
	3. Organized Football trial with Sudeva Academy in the month of June 2024 where 8 participants
	selected in the trial.