

TSM-CPP/MoEF&CC/TS-01/2024-04/167 November 25, 2024

The Director(s)

Ministry of Environment, Forest & Climate Change, Integrated Regional Office, A/3, Chandrasekharpur, Bhubaneswar-751023

Subject: Submission of half yearly EC compliance reports for expansion of existing 300MW TPP by

installation of 185MW coal based TPP at M/s. Tata Steel Limited – TSM-CPP (formerly known as Angul Energy Limited), Odisha for the period from April' 24 to September' 24.

Reference: EC vide letter No. J-13012/78/2011-IA-II (T); dated: 12.02.2015 & its amendment dated:

25.09.2020.

Dear Sir,

With reference to the captioned subject and cited reference, we are herewith submitting six monthly compliance reports for the conditions stipulated in the Environmental Clearance for expansion of existing (2x150) 300MW TPP by installation of 185MW coal based TPP at M/s. Tata Steel Limited – TSM-CPP (formerly known as Angul Energy Limited), Odisha for the period from April 2024 to September 2024 along with monitoring reports for your kind perusal.

The soft copies of the aforesaid compliance report are also being sent through mail to <u>roez.bsr-mef@nic.in</u> for your kind information and necessary record please. Also copy of EC compliance is being uploaded on MoEF&CC web site on portal <a href="http://environmentalclearance.nic.in">http://environmentalclearance.nic.in</a>.

Hope, the above are in line with the statutory requirements.

Thanking you Yours faithfully, For TSM-CPP

Rajesh Kumar Agarwal,

(Factory Manager, TSM-CPP)

Encl: As above

#### Copy to:

The Zonal Officer, Central Pollution Control Board, Southern Conclave Block, 502, 5<sup>th</sup>& 6<sup>th</sup> Floors, 1582 RajdangaMain Road, Kolkata – 700107.

2. The Member Secretary, SPCB, Parivesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Odisha, Bhubaneswar-751012

3. The Regional Officer, State Pollution Control Board, Angul, Odisha.

#### **TATA STEEL LIMITED**



(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत



(Council of Scientific & Industrial Research)
Bhubaneswar - 751013, Odisha, INDIA



#### **TEST REPORT**

Ref. No. LT02-CCD/11/24

Date: 18.11.2024

Name & Address of the Party:

Tata Steel Ltd.

At-Narendrapur, P.O.-Kusupanga Via-Meramandali, Dist-Dhenkanal

Pin-759121, Odisha.

Your Ref. No.:

Work Order No.: 3000156889/A06, Date: 26.10.2023

Sample Details:

1. Indian Coal (01 No.) 2. Imported Coal (01 No.)

3. Iron Ore (01 No.) 4. Lime stone (01 No.)

Date of Receiving:

18.09.2024

Date(s) of Conducting Test:

03.10.2024

Date of Completion of Test:

08.11.2024

Method Adopted:

1. proximate analysis of coal samples by classical methods.

2. Major and trace element analysis of Coal, Iron ore, lime stone and Dolomite samples through wet chemical route by gravimetric, AAS and ICP-OES techniques.

3. Coal samples were leached with distilled water at a solid: liquid ratio of 1:20 for

Fluoride analysis using ISE.

**<u>Detail Report</u>**: Following data tables are enclosed:

Table-1. Proximate analysis of coal samples.

Table-2. Chemical composition analysis of coal samples.

**Table-3.** Trace element analysis of coal samples.

Table-4. Chemical composition analysis of Iron ore, Lime stone and Dolomite samples.

Table-5. Trace element analysis of Iron ore, Lime stone and Dolomite samples.

Pr. Technical Officer

Central Characterization Dept.

(Dr. B. Nayak) Chief Scientist PL & Head, CCD

**N.B.:** The samples are not drawn by CSIR-IMMT. Liability, if any, for the institute arising in connection with the testing shall be subject to ceiling of amount received by the institute from the client. The report should not be interpreted in part.



(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत



(Council of Scientific & Industrial Research)
Bhubaneswar - 751013, Odisha, INDIA



#### TEST REPORT

Ref. No. LT02-CCD/11/24

Date: 18.11.2024

Table-1. Proximate analysis of coal samples.

| Sample ID     | Moisture (%) | Volatile Matter (%) | Ash (%) | Fixed Carbon (%) |
|---------------|--------------|---------------------|---------|------------------|
| Indian coal   | 2.43         | 24.71               | 43.31   | 29.55            |
| Imported coal | 2.58         | 22.64               | 12.32   | 62.46            |

Table-2. Chemical composition analysis of coal samples.

| Sl. No. | Component                      | Concentration i | n Test Samples, % |
|---------|--------------------------------|-----------------|-------------------|
|         |                                | Indian Coal     | Imported Coal     |
| 1       | SiO <sub>2</sub>               | 21.91           | 5.76              |
| 2       | Al <sub>2</sub> O <sub>3</sub> | 13.64           | 3.93              |
| 3       | Fe <sub>2</sub> O <sub>3</sub> | 1.56            | 0.35              |
| 4       | TiO <sub>2</sub>               | 0.78            | 0.10              |
| 5       | MnO                            | 0.007           | 0.006             |
| 6       | CaO                            | 0.28            | 0.44              |
| 7       | MgO                            | 0.10            | 0.08              |
| 8       | Na <sub>2</sub> O              | 0.62            | 0.32              |
| 9       | K <sub>2</sub> O               | 0.74            | 0.11              |
| 10      | P <sub>2</sub> O <sub>5</sub>  | 0.09            | 0.18              |
| 11      | S/SO <sub>3</sub>              | 0.34/0.85       | 0.66/1.65         |
| 12      | LOI                            | 57.29           | 86.05             |

(J. Das)

Pr. Technical Officer Central Characterization Dept.

(Dr. B. Nayak) Chief Scientist PL & Head, CCD



(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत



(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA



#### **TEST REPORT**

Ref. No. LT02-CCD/11/24

Date: 18.11.2024

Table-3. Trace element analysis of coal samples

| Sl. No. | Parameters                            | Trace | e element concentratio | ns in test samples |  |
|---------|---------------------------------------|-------|------------------------|--------------------|--|
|         |                                       | Unit  | Indian coal            | Imported coal      |  |
| 1       | Pb                                    | mg/kg | 15.68                  | 2.15               |  |
| 2       | Cd                                    | mg/kg | 0.19                   | 0.07               |  |
| 3       | Cu                                    | mg/kg | 39.07                  | 12.81              |  |
| 4       | Ni                                    | mg/kg | 37.62                  | 18.04              |  |
| 5       | Co                                    | mg/kg | 17.62                  | 8.36               |  |
| 6       | Cr                                    | mg/kg | 65.05                  | 18.62              |  |
| 7       | Zn                                    | mg/kg | 53.84                  | 25.96              |  |
| 8       | Ag                                    | mg/kg | 1.09                   | 0.39               |  |
| 9       | Sb                                    | mg/kg | 6.33                   | 1.73               |  |
| 10      | Mo                                    | mg/kg | 3.46                   | 0.39               |  |
| 11      | <b>V</b> .                            | mg/kg | 70.84                  | 22.08              |  |
| 12      | Se                                    | mg/kg | 1.28                   | 0.21               |  |
| 13      | Ba                                    | mg/kg | 174.08                 | 31.01              |  |
| 14      | As                                    | mg/kg | 110.6                  | 25.7               |  |
| 15      | Hg                                    | mg/kg | 1.17                   | 0.86               |  |
| 16      | В                                     | %     | 0.28                   | 0.11               |  |
| 17      | F in water leaching (1:20) solutions. | mg/L  | 0.58                   | 0.21               |  |

(J. Das)

Pr. Technical Officer Central Characterization Dept.

(Dr. B. Navak)
Chief Scientist
PL & Head, CCD



(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत



(Council of Scientific & Industrial Research)
Bhubaneswar - 751013, Odisha, INDIA



#### **TEST REPORT**

Ref. No. LT02-CCD/11/24

Date: 18.11.2024

Table-4. Chemical composition analysis of Iron ore and Lime stone samples.

| Sl. No. | Component                      | Concentration in | n Test Samples, % |
|---------|--------------------------------|------------------|-------------------|
|         |                                | Iron Ore         | Lime Stone        |
| 1       | SiO <sub>2</sub>               | 1.61             | 1.92              |
| 2       | Al <sub>2</sub> O <sub>3</sub> | 2.82             | 0.88              |
| 3       | Fe <sub>2</sub> O <sub>3</sub> | 89.90            | 0.04              |
| 4       | TiO <sub>2</sub>               | 0.19             | 0.007             |
| 5       | MnO                            | 0.015            | 0.005             |
| 6       | CaO                            | 0.16             | 44.37             |
| 7       | MgO                            | 0.02             | 11.1              |
| 8       | Na <sub>2</sub> O              | 0.87             | 1.24              |
| 9       | K <sub>2</sub> O               | 0.07             | 0.18              |
| 10      | P <sub>2</sub> O <sub>5</sub>  | 0.11             | 0.008             |
| 11      | S/SO <sub>3</sub>              | 0.08/0.20        | 0.09/0.23         |
| 12      | LOI                            | 2.86             | 42.09             |

Pr. Technical Officer Central Characterization Dept.

(Dr. B. Nayak) Chief Scientist PL & Head, CCD



(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओडिशा, भारत



(Council of Scientific & Industrial Research)
Bhubaneswar - 751013, Odisha, INDIA



#### **TEST REPORT**

Ref. No. LT02-CCD/11/24

Date: 18.11.2024

Table-5. Trace element analysis of Iron ore and Lime stone samples.

| Sl. No. | Parameters | Trace elemen | t concentrations | in test samples |
|---------|------------|--------------|------------------|-----------------|
|         |            | Unit         | Iron Ore         | Lime Stone      |
| 1       | Pb         | mg/kg        | 0.67             | 0.09            |
| 2       | Cd         | mg/kg        | BDL              | BDL             |
| 3       | Cu         | mg/kg        | 10.71            | 4.42            |
| 4       | Ni         | mg/kg        | 0.58             | 2.49            |
| 5       | Co         | mg/kg        | 7.42             | 5.95            |
| 6       | Cr         | mg/kg        | 64.03            | 9.93            |
| 7       | Zn         | mg/kg        | 28.95            | 12.88           |
| 8       | Ag         | mg/kg        | 0.15             | 0.35            |
| 9       | Sb         | mg/kg        | 0.08             | 0.03            |
| 10      | Mo         | mg/kg        | BDL              | 0.26            |
| 11      | V          | mg/kg        | 39.10            | 2.47            |
| 12      | Se         | mg/kg        | BDL              | BDL             |
| 13      | Ba         | mg/kg        | 65.0             | 10.04           |
| 14      | As         | mg/kg        | 1.86             | 15.90           |
| 15      | Hg         | mg/kg        | 0.67             | 0.36            |
| 16      | В          | %            | 0.56             | 0.78            |

(J. Das)

Pr. Technical Officer Central Characterization Dept.

(Dr. B. Navak) Chief Scientist PL & Head, CCD

Building No D5, Unit No- 230. Bhumi World Industrial Park. Mumbai, Nashik Highway, Pimples Village, Bhiwandi, Near Kalyan Bhiwandi Bypass, Tal - Bhiwandi

Dist Thane- 421302 0252 2672352

Email: membaliab@mitrask.com

Web www mitrask com





#### TEST REPORT

ULR: TC-867324000000282F

Name & Address of the Customer:

Tata Steel Ltd.

N11-55, Narendrapur, Mcramandli, Dhenkanal Odisha-759129, India

Report No.

Date

:C/2024/282

:21.06.2024 :MSK/MUM/2024/282

Sample No. Date of receipt of sample

:14.06.2024

Date(s) of performance

:14.06.2024-21.06.2024

Ref. No. & Date

:3000148695/A06 dt.15.12.2022

Discipline

:Chemical

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

| 1  | Group                                            | : Atmospheric Pollution                     |
|----|--------------------------------------------------|---------------------------------------------|
| 2  | Description of sample (As declared by customer)  | : Stack Emission                            |
| 3  | Sample Mark (if any, given by the customer)      | : NA                                        |
| 4  | Date of sampling                                 | : 12.06.2024 at 08.30 AM to 08.58 AM        |
| 5  | Place of sampling                                | : BF PP-1, Boiler-3(1st Sample)             |
| 6  | Environmental conditions during sampling         | : Cold Chain Maintained                     |
| 7  | Sampling Drawn By                                | : Mr. Chinmaya Biswal                       |
| 8  | Sampling Plan & Procedures used                  | : IS 11255 (Part-1, Part-2, Part-3, Part-7) |
| 9  | Location of performance of laboratory activities | : Laboratory Permanent Facility             |
| 10 | Deviation from the method (if any)               | : No                                        |

Reviewed By:

Signature

Name

Designation

: Technical Manager

For Mitra S.K. Private Limited

Authorized Signatory

Signature

Name

: Ms. Rekha Patel

Designation

: Technical Manager

Building No.D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass, Tal - Bhiwandi

Dist Thane- 421302 Tel. : 0252 2672352

Email: mumballab@mitrask.com Web www.mitrask.com

Report No. : C/2024/282

Sample No. : MSK/MUM/2024/282



ULR: TC-867324000000282F

#### ANALYSIS RESULT

| 1.                                  | SENERAL INFORMATION ABOUT STACK:                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BF PP-1, Boiler-3(1st Sample)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                                   | Stack connected to                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Process Emission                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                     | Emission due to                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCC                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                   | Material of construction of Stack                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Circular                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                   | Shape of Stack                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                                   | Whether Stack is provided with permanent platform                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA NA                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6                                   | Capacity                                                                                      | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14/4                                  | The control of the co |
| B: I                                | PHYSICAL CHARACTERISTICS OF STACK:                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.5 m                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                   | Height of Stack from ground level                                                             | The second secon | 4.8 m                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2                                   | Diameter of Stack at sampling point                                                           | - Indiana and American Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8 m                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3                                   | Height of the sampling point from ground level                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18.02 m2                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                   | Area of Stack                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.02 1112                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C: A                                | ANALYSIS/CHARACTERSTIC OF STACK:                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2. Fuel consumption: NA               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1                                   | Fuel used : Coal                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z. Fuel consumption: 1772             | and the same of th |
|                                     |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CC                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D: F                                | RESULTS OF SAMPLING & ANALYSIS OF GASEOUS                                                     | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RESULT                                | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D: F                                | ISSION:                                                                                       | and the same of th | RESULT<br>126                         | METHOD  IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| D: F                                |                                                                                               | °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D: F<br>EM                          | ISSION:                                                                                       | °C<br>mm of Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 126<br>748                            | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D: F<br>EM<br>1<br>2<br>3           | ISSION: Temperature of emission Barometric pressure Velocity of gas                           | °C<br>mm of Hg<br>m/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 126<br>748<br>5.87                    | IS 11255 (Part-3)<br>IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| D: F<br>EM<br>1<br>2<br>3           | ISSION: Temperature of emission Barometric pressure Velocity of gas Flow rate of the flue gas | °C<br>mm of Hg<br>m/sec<br>Nm³/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126<br>748                            | IS 11255 (Part-3)<br>IS 11255 (Part-3)<br>IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| D: F<br>EM<br>1<br>2<br>3           | ISSION: Temperature of emission Barometric pressure Velocity of gas                           | °C<br>mm of Hg<br>m/sec<br>Nm'/hr<br>mg/Nm3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 126<br>748<br>5.87<br>274009<br>712.5 | 1S 11255 (Part-3)<br>1S 11255 (Part-3)<br>1S 11255 (Part-3)<br>1S 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D: F<br>EM<br>1<br>2<br>3<br>4<br>5 | ISSION: Temperature of emission Barometric pressure Velocity of gas Flow rate of the flue gas | °C<br>mm of Hg<br>m/sec<br>Nm³/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 126<br>748<br>5.87<br>274009          | 1S 11255 (Part-3)<br>1S 11255 (Part-3)<br>1S 11255 (Part-3)<br>1S 11255 (Part-3)<br>1S 11255 (Part-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

| \$1-4 | 1.Equipment name: - Stack Sampler | 2.Model No: TEI-131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|-------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | 3.Make: - THERMO                  | 4.St. No. 204-B-23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|       | 5.Calibration Done: - 27.03.2024  | 6.Calibration Due: - 26.03.2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|       | J. Cambration Done 27.05.2021     | The second secon |  |

End

Reviewed By:

Signature

Name Designation Technical Manager

**Authorized Signatory** For Mitra S.K. Private Limited

Signature

Name

: Ms. Rekha Patel

Designation

: Technical Manager

- The results relate only to the item(s) tested.
- This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.
- The reserved part of sample(s) shall be retained for 10 days & 1 year (Air) from the date of issue of the Test Report.

Doc No MSK/GEN/19/01

Building No.D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass, Tal - Bhiwandi

Dist. Thane- 421302. Tel. : 0252 2672352

Email: mumbailab@mitrask.com



#### TEST REPORT

Name & Address of the Customer:

Tata Steel Ltd.

NH-55, Narendrapur, Meramandli, Dhenkanal, Odisha-759129, India

Report No.

:C/2024/282A

Date

:21.06.24

Sample No.

:MSK/MUM/2024/282A

Date of receipt of sample Date(s) of performance

:14.06.24

:14.06.24-21.06.24

Ref. No. & Date

:3000147168/A06 dt.15.12.2022

Discipline

:Chemical

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

| 1  | Group                                            | : Atmospheric Pollution            |
|----|--------------------------------------------------|------------------------------------|
| 2  | Description of sample (As declared by customer)  | : Stack Emission                   |
| 3  | Sample Mark (if any, given by the customer)      | : NA                               |
| 4  | Date of sampling                                 | : 12.06.24 at 08.30 AM to 08.58 AM |
| 5  | Place of sampling                                | : BF PP-1, Boiler-3 (1st Sample)   |
| 6  | Environmental conditions during sampling         | : Cold Chain Maintained            |
| 7  | Sampling Drawn By                                | : Mr. Chinmaya Biswal              |
| 8  | Sampling Plan & Procedures used                  | : IS 11255 (Part-1,2,3,7)          |
| 9  | Location of performance of laboratory activities | : Laboratory Permanent Facility    |
| 10 | Deviation from the method (if any)               | : No                               |

#### **ANALYSIS RESULT**

| RESULTS OF SAMPLING & ANALYSIS OF GASEOUS EMISSION: | <u>Unit</u> | RESULT | <u>METHOD</u>   |  |
|-----------------------------------------------------|-------------|--------|-----------------|--|
| Mercury                                             | mg/Nm3      | 0.002  | USEPA 29 : 1996 |  |

Reviewed By:

Signature

Designation

Name

Signature

**Authorized Signatory** 

For Mitra S.K. Private Limited : A ranko kumar Roth :Mr. Ananta Kumar Rath

: Avanta woman Rosts : Mr. Ananta Kumar Rath : Operation Manager

Name Designation : Operation Manager

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited. The reserved part of sample(s) shall be retained for 10 days & 1 year (Air) from the date of issue of the Test Report.

Building No D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Villago, Bhlwandi, Near Kalyan Bhlwandi Bypass,Tal - Bhlwandi

Dist. Thane- 421302. Tel. : 0252 2672352

Emall: mumballab@mitrask.com

Web ; www.mitrask.com





#### TEST REPORT

ULR: TC-867324000000218F

Name & Address of the Customer:

Tata Steel Ltd.

NII-55, Narendrapur, Meramandli,

Dhenkanal, Odisha-759129, India

Report No.

Date

Sample No.

Date of receipt of sample

Date(s) of performance

Ref. No. & Date

Discipline

:C/2024/218

:11.06.2024

:MSK/MUM/2024/218

:06.06.2024

:06.06.2024-11.06.2024

:3000148695/A06 dt.15.12.2022 :Chemical

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

| 1  | Group                                            | : Atmospheric Pollution                  |  |
|----|--------------------------------------------------|------------------------------------------|--|
| 2  | Description of sample (As declared by customer)  | : Stack Emission                         |  |
| 3  | Sample Mark (if any, given by the customer)      | :NA                                      |  |
| 4  | Date of sampling                                 | ; 03.06.2024 at 04.46 PM to 05.15 PM     |  |
| 5  | Place of sampling                                | : AEL STACK 2                            |  |
| 6  | Environmental conditions during sampling         | : Cold Chain Maintained                  |  |
| 7  | Sampling Drawn By                                | : Mr. Chinmaya Biswal                    |  |
| 8  | Sampling Plan & Procedures used                  | : IS 11255 (Part-1, Part2, Part3, Part7) |  |
| 9  | Location of performance of laboratory activities | : Laboratory Permanent Facility          |  |
| 10 | Deviation from the method (if any)               | : No                                     |  |

Reviewed By:

Signature Name Designation

: Technical Manager

**Authorized Signatory** 

For Mitra S.K. Private Limited

Signature Namo

: Ms. Rekha Patel

Designation

: Technical Manager

Building No.D5, Unit No- 230, Bhuml World Industrial Park, Mumbal, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass,Tal - Bhiwandi

Dist. Thane- 421302. Tel. : 0252 2672352.

Email: mumbailab@mitrask.com Web : www.mitrask.com

Report No.

: C/2024/218

Sample No.

: MSK/MUM/2024/218

## Doc No MSK/GEN/19/01 TESTING . INSPECTION TC-8078

ULR: TC-867324000000218F

#### **ANALYSIS RESULT**

| Stack connected to                                      |          | AEL STACK 2                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 Emission due to                                       |          | Process Emission                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Material of construction of Stack                     |          | RCC                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 Shape of Stack                                        |          | Circular                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5 Whether Stack is provided with permanent platform     |          | Yes                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6 Capacity                                              |          | NA                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B: PHYSICAL CHARACTERISTICS OF STACK:                   |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Height of Stack from ground level                     |          | 120 m                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2 Diameter of Stack at sampling point                   |          | 7.7 m                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 Height of the sampling point from ground level        |          | 50 m                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 Area of Stack                                         |          | 46.5426 m2                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C: ANALYSIS/CHARACTERSTIC OF STACK:                     |          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 Fuel used : Coke                                      |          | <ol><li>Fuel consumption: NA</li></ol> | Marine Control of the |
| : RESULTS OF SAMPLING & ANALYSIS OF GASEOUS<br>MISSION: | Unit     | RESULT                                 | <u>METHOD</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 Temperature of emission                               | °C       | 130                                    | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 Barometric pressure                                   | mm of Hg | 746                                    | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3 Velocity of gas                                       | m/sec    | 10.29                                  | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 Flow rate of the flue gas                             | Nm³/hr   | 1206820                                | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5 Sulphur Dioxide                                       | mg/Nm3   | 855.4                                  | IS 11255 (Part-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 Nitrogen oxide                                        | mg/Nm3   | 415.4                                  | IS 11255 (Part-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7 Particulate Matters                                   | mg/Nm³   | 29.9                                   | IS 11255 (Part-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 8 Moisture                                              | %v/v     | 3.0                                    | IS 11255 (Part-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Note: | 1.Equipment name: - Stack Sampler | 2.Model No: TEI-131             |
|-------|-----------------------------------|---------------------------------|
|       | 3.Make: - THERMO                  | 4.Sl. No. 204-B-23              |
|       | 5.Calibration Done: - 27.03.2024  | 6.Calibration Due: - 26.03.2025 |
|       | J.Canotation Done.                | 1                               |

End

Reviewed By:

**Authorized Signatory** 

For Mitra S.K. Private Limited

Signature

Designation

Name

: Ms. Rekha Patel

Signature Name

Designation

: Ms. Rekha Patel : Technical Manager

: Technical Manager

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited.

The reserved part of sample(s) shall be retained for 10 days & 1 year (Air) from the date of issue of the Test Report.

Head Office: Shrachi Centre (5th floor), 74B, A.J.C. Bose Road, Kolkata - 700 016, West Bengal, India. Tel.: 91 33 40143000 / 22650006 / 22650007 Fax: 91 33 22650008 Email: info@mitrask.com. Website: www.mitrask.com

Page 2of 2

Doc No MSK/GEN/19/01

Building No.D5, Unit No- 230, Bhumi World Industrial Park, Mumbai, Nashik Highway, Pimplas Village, Bhiwandi, Near Kalyan Bhiwandi Bypass,Tal - Bhiwandi

Dist. Thane- 421302. Tel. : 0252 2672352

Email: mumbailab@mitrask.com

#### **TEST REPORT**

Name & Address of the Customer:

Tata Steel Ltd.

NH-55, Narendrapur, Meramandli,

Dhenkanal, Odisha-759129, India

Report No.

:C/2024/218A

Date

:11.06.24

Sample No. Date of receipt of sample :MSK/MUM/2024/218A :06.06.24

Date(s) of performance

:06.06.24-11.06.24

Ref. No. & Date

:3000147168/A06 dt.15.12.2022

Discipline

:Chemical

We hereby certify that the following sample drawn by us from the customer has been analyzed with the following results:

| 1  | Group                                            | : Atmospheric Pollution            |  |  |  |  |
|----|--------------------------------------------------|------------------------------------|--|--|--|--|
| 2  | Description of sample (As declared by customer)  | : Stack Emission                   |  |  |  |  |
| 3  | Sample Mark (if any, given by the customer)      | : NA                               |  |  |  |  |
| 4  | Date of sampling                                 | : 03.06.24 at 04.46 PM to 05.15 PM |  |  |  |  |
| 5  | Place of sampling                                | : AEL STACK 2                      |  |  |  |  |
| 6  | Environmental conditions during sampling         | : Cold Chain Maintained            |  |  |  |  |
| 7  | Sampling Drawn By                                | : Mr. Chinmaya Biswal              |  |  |  |  |
| 8  | Sampling Plan & Procedures used                  | : IS 11255 (Part-1,2,3,7)          |  |  |  |  |
| 9  | Location of performance of laboratory activities | : Laboratory Permanent Facility    |  |  |  |  |
| 10 | Deviation from the method (if any)               | : No                               |  |  |  |  |

#### **ANALYSIS RESULT**

| RESULTS OF SAMPLING & ANALYSIS OF GASEOUS EMISSION: | <u>Unit</u> | RESULT | <u>METHOD</u>   |  |
|-----------------------------------------------------|-------------|--------|-----------------|--|
| Mercury                                             | mg/Nm3      | 0.002  | USEPA 29 : 1996 |  |

Reviewed By:

**Authorized Signatory** 

For Mitra S.K. Private Limited

Signature

: Ananta wowen Roots : Mr. Ananta Kumar Rath

Name Designation : Operation Manager

Signature

Ananta kuman Rost

Name

Designation

: Operation Manager

The results relate only to the item(s) tested.

This Test Report shall not be reproduced except in full, without the permission of Mitra S.K. Private Limited. The reserved part of sample(s) shall be retained for 10 days & 1 year (Air) from the date of issue of the Test Report.

## **Summary of Surface Water Quality Analysis**

(Period: From April 2024 to September 2024)

| S. N | Davamatas              | l loo!4 | Kishin        | ıda Nala      | Lingar        | a Nala        | Brahama       | ani River     |
|------|------------------------|---------|---------------|---------------|---------------|---------------|---------------|---------------|
| 5. N | Parameter              | Unit    | U/S           | D/S           | U/S           | D/S           | U/S           | D/S           |
| 1    | pH Value               | -       | 6.92-8.58     | 7.32-8.20     | 6.78-8.50     | 7.36-8.4      | 6.87-8.29     | 7.02-8.13     |
| 2    | Colour                 | Hazen   | BDL(DL:2.0)   | BDL(DL:2.0)   | BDL(DL:2.0)   | BDL(DL:2.0)   | BDL(DL:2.0)   | BDL(DL:2.0)   |
| 3    | Temperature            | Deg C   | 25-25.3       | 25-25.2       | 25-25.2       | 25-25.2       | 25-25.3       | 25-25.0       |
| 4    | Total Suspended Solids | mg/l    | 3.8-15.6      | 2.6-20.0      | 3.8-19        | 8.6-18.2      | 10.8-90       | 3.2-120       |
| 5    | Arsenic as As          | mg/l    | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) |
| 6    | BOD, 3days at 27°C     | mg/l    | 2.7-5.6       | 2.0-5.6       | BDL(DL:2.0)   | 5.7-6.4       | 2.4-9.6       | 3.8-13        |
| 7    | Boron as B             | mg/l    | BDL(DL:0.25)  | BDL(DL:0.25)  | BDL(DL:0.25)  | BDL(DL:0.25)  | BDL(DL:0.25)  | BDL(DL:0.25)  |
| 8    | Cadmium as Cd          | mg/l    | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) |
| 9    | Calcium as Ca          | mg/l    | 34-80.8       | 34-80.8       | 13-89.0       | 26-64.4       | 12-26.0       | 12.12-27.0    |
| 10   | Chlorides as Cl        | mg/l    | 35-158.35     | 35-148.45     | 14-152        | 20-126        | 11-29.69      | 12.0-108.0    |
| 11   | COD                    | mg/l    | 9.6-28        | 16.0-23       | 10.0-20       | 19.0-28       | 8.4-34        | 13.0-40       |
| 12   | Copper (as Cu)         | mg/l    | BDL(DL:0.02)  | BDL(DL:0.02)  | BDL(DL:0.02)  | BDL(DL:0.02)  | BDL(DL:0.02)  | BDL(DL:0.02)  |
| 13   | Cyanide as CN          | mg/l    | BDL(DL:0.01)  | BDL(DL:0.01)  | BDL(DL:0.01)  | BDL(DL:0.01)  | BDL(DL:0.01)  | BDL(DL:0.01)  |

| 14 | Fluoride as F-            | mg/l | 0.22-2.65      | 0.21-1.80      | 0.26-0.38      | 0.19-1.54      | 0.25-0.41      | 0.20-0.52      |
|----|---------------------------|------|----------------|----------------|----------------|----------------|----------------|----------------|
| 15 | Hexa Chromium as<br>Cr +6 | mg/l | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   |
| 16 | Iron as Fe                | mg/l | 0.96-4.9       | 0.17-4.9       | 0.18-2.0       | 0.59-1.0       | 0.17-2.1       | 2.1-2.2        |
| 17 | Lead (as Pb)              | mg/l | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  |
| 18 | Manganese (as Mn)         | mg/l | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   |
| 19 | Mercury (as Hg)           | mg/l | BDL(DL:0.0002) | BDL(DL:0.0002) | BDL(DL:0.0002) | BDL(DL:0.0002) | BDL(DL:0.0002) | BDL(DL:0.0002) |
| 20 | Nickel (as Ni)            | mg/l | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   | BDL(DL:0.01)   |
| 21 | O&G                       | mg/l | BDL(DL:1.4)    | BDL(DL:1.4)    | BDL(DL:1.4)    | BDL(DL:1.4)    | BDL(DL:1.4)    | BDL(DL:1.4)    |
| 22 | Phenolic Comp             | mg/l | BDL(DL:0.001)  | BDL(DL:0.001)  | BDL(DL:0.001)  | BDL(DL:0.001)  | BDL(DL:0.001)  | BDL(DL:0.001)  |
| 23 | Phosphate as P            | mg/l | 0.11-0.85      | 0.07-0.84      | 0.10-0.29      | 0.10-0.40      | 0.08-0.35      | 0.12-0.59      |
| 24 | RFC                       | mg/l | BDL(DL:0.1)    | BDL(DL:0.1)    | BDL(DL:0.1)    | BDL(DL:0.1)    | BDL(DL:0.1)    | BDL(DL:0.1)    |
| 25 | Selenium (as Se)          | mg/l | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  | BDL(DL:0.005)  |
| 26 | TKN                       | mg/l | BDL(DL:0.3)    | BDL(DL:0.3)    | BDL(DL:0.3)    | BDL(DL:0.3)    | BDL(DL:0.3)    | BDL(DL:0.3)    |
| 27 | Zinc (as Zn)              | mg/l | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   | BDL(DL:0.02)   |

Note: BDL: Below Detectable Limit; DL: Detectable Limit, U/S: Upstream D/S: Downstream

**Source:** Monitoring/ Analysis report of S.K. Mitra Private Limited and Environment Laboratory of TSM.

## **Summary of Treated Domestic Effluent Analysis**

(Period: From April 2024 to September 2024)

| S.N. | Location   | Parameters in Range |                         |                              |  |  |  |  |  |
|------|------------|---------------------|-------------------------|------------------------------|--|--|--|--|--|
|      |            | рН                  | Suspended Solid in mg/l | BOD (3 days at 27°C) in mg/l |  |  |  |  |  |
| 1.   | Colony STP | 7.40-7.85           | 23-36                   | 9.0-10.7                     |  |  |  |  |  |
| 2.   | AEL STP    | 7.04-7.81           | 18-28                   | 8.7-11.3                     |  |  |  |  |  |
| 3.   | BF-1 STP   | 6.91-7.85           | 18-32                   | 7.8-9.8                      |  |  |  |  |  |

## **Summary of Effluent Treatment Plant Analysis**

(Period: From April 2024 to September 2024)

|     |                         | Parameters in Range |                            |                                      |                             |              |            |  |  |  |
|-----|-------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------|--------------|------------|--|--|--|
| S.N | Location                | рН                  | Suspended<br>Solid in mg/l | Chemical<br>Oxygen Demand<br>in mg/l | BOD (3days at 27°C) in mg/l | Oil & Grease | Iron as Fe |  |  |  |
| 1.  | ETP-1 (Outlet)          | 7.18-8.15           | 13-26                      | 19-45                                | 3.5-7.0                     | <4.0         | 0.27-0.72  |  |  |  |
| 2.  | ETP-2 (Outlet)          | 6.53-7.88           | 18-24                      | 18-30                                | 3.3-5.2                     | <4.0         | 0.10-0.60  |  |  |  |
| 3.  | ETP-3 (Outlet)          | 6.76-8.02           | 25-41                      | 29-37                                | 3.7-5.2                     | <4.0         | 0.29-0.89  |  |  |  |
| 4.  | CRM (ETP Outlet)        | 7.16-8.13           | 18-58                      | 100-160                              | 14.6-24.9                   | <4.0         | 0.79-2.80  |  |  |  |
| 5.  | BF-1 (Thickener Outlet) | 6.63-7.86           | 35-86                      | 33-48                                | 4.5-9.5                     | <4.0         | -          |  |  |  |
| 6.  | BF-2 (Thickener Outlet) | 6.69-7.58           | 42-76                      | 36-47                                | 4.4-9.5                     | <4.0         | -          |  |  |  |
| 7.  | BOF (Thickener Outlet)  | >10.0               | 63-78                      | 36-51                                | 4.5-8.0                     | <4.0         | -          |  |  |  |

|      | Location                      | Parameters in Range |                            |                                      |                                   |                 |           |           |  |  |  |
|------|-------------------------------|---------------------|----------------------------|--------------------------------------|-----------------------------------|-----------------|-----------|-----------|--|--|--|
| S.N. |                               | рН                  | Suspended<br>Solid in mg/l | Chemical<br>Oxygen Demand<br>in mg/l | BOD (3days<br>at 27°C) in<br>mg/l | Oil &<br>Grease | TCN       | Phenol    |  |  |  |
| 8.   | Coke Oven-1<br>(BOD-1 Outlet) | 6.80-7.64           | 28-80                      | 120-210                              | 16.5-28.5                         | <4.0            | 0.12-0.18 | 0.76-0.87 |  |  |  |
| 9.   | Coke Oven-2<br>(BOD-2 Outlet) | 6.77-7.23           | 22-41                      | 130-180                              | 20.1-26.8                         | <4.0            | 0.11-0.14 | 0.71-0.81 |  |  |  |

## Summary of ground water level monitoring report inside plant premises

(Period: From April 2024 to September 2024)

| S.N. | Location with description | Sample<br>Code | Depth of Monitoring<br>Bore Well (m) | Longitude  | Latitude   | Ground Water<br>Level (m) |
|------|---------------------------|----------------|--------------------------------------|------------|------------|---------------------------|
| 1    | Colony near STP           | GW-1           | 50.29                                | 20°49.045' | 85°15.734' | 4.10                      |
| 2    | RMHS Near Wagon Tippler   | GW-2           | 91.44                                | 20°47.752' | 85°15.993' | 2.12                      |
| 3    | Near Blast Furnace-2      | GW-3           | 49.38                                | 20°47.25'  | 85°15.613' | 5.20                      |
| 4    | Near Railway bridge       | GW-4           | 47.55                                | 20°48.920' | 85°15.858' | 2.50                      |

## **Ground Water Quality Analysis**

| S.N. | Parameter              | Unit  | GW-2       | GW-3       | GW-4       | GW-6       | Standard as per<br>IS-10500-2012 |
|------|------------------------|-------|------------|------------|------------|------------|----------------------------------|
| 1    | p H                    | -     | 7.55       | 7.21       | 7.80       | 7.76       | 6.50-8.50                        |
| 2    | Colour                 | Hazen | Colourless | Colourless | Colourless | Colourless | 15                               |
| 3    | Odour                  | -     | Agreeable  | Agreeable  | Agreeable  | Agreeable  | -                                |
| 4    | T. Hardness (as CaCO3) | mg/l  | 278        | 310        | 244        | 282        | 300                              |
| 5    | Calcium as Ca          | mg/l  | 67.33      | 74.54      | 58.52      | 68.14      | 75                               |
| 6    | Magnesium as Mg        | mg/l  | 26.84      | 30.26      | 23.91      | 27.33      | 30                               |
| 7    | Iron as Fe             | mg/l  | 0.13       | 0.20       | 0.16       | 0.15       | 0.3                              |
| 8    | Chloride as Cl         | mg/l  | 94.30      | 114.15     | 71.96      | 81.89      | 250                              |
| 9    | Fluoride as F-         | mg/l  | 0.64       | 0.49       | 0.68       | 0.72       | 1                                |
| 10   | Dissolved solids       | mg/l  | 344        | 390        | 298        | 366        | 500                              |
| 11   | Nitrate as NO3         | mg/l  | 4.80       | 6.20       | 4.20       | 7.80       | 45                               |
| 12   | Chromium as Cr+6       | mg/l  | 0.016      | 0.020      | 0.024      | 0.012      | 0.050                            |
| 13   | Alkalinity as CaCO3    | mg/l  | 78         | 108        | 66         | 86         | 200                              |

## Summary of ground water level monitoring report inside plant premises

**Ground Water Level Period: March 2024** 

| S.N | Location Sample Code |       | Longitude   | Latitude    | Water Level from GL<br>(m) BGL<br>May'24 |
|-----|----------------------|-------|-------------|-------------|------------------------------------------|
| 1   | Kharagprasad         | GW-01 | 20° 49.299' | 85º 18.923' | 4.2                                      |
| 2   | Charadagadia         | GW-02 | 20º 47.768' | 85º 17.083' | 7.5                                      |
| 3   | Sibpur               | GW-03 | 20° 46.941′ | 85° 14.394' | 6.8                                      |
| 4   | Kochilamada          | GW-04 | 20° 47.541′ | 85º 16.802' | 5.9                                      |
| 5   | Galapada             | GW-05 | 20º 48.142' | 85º 18.600' | 4.7                                      |
| 6   | Motonga              | GW-06 | 20° 48.143′ | 85° 18.599' | 4.1                                      |
| 7   | Narendrapur          | GW-08 | 20º 49.483' | 85º 15.530' | 9.2                                      |
| 8   | Khaliberena          | GW-09 | 20º 46.946' | 85º 14.396' | 4.6                                      |
| 9   | Ganthigadia          | GW-10 | 20º 48.501' | 85º 15.118' | 2.2                                      |

## **Ground Water Quality Analysis Report of surrounding villages**

#### March 2024

| S.N. | Parameters                                     | unit   | GW-01             | GW-02             | GW-03             | GW-04             | GW-05             | GW-06             | GW-07             | GW-08             | GW-9              |
|------|------------------------------------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| 1    | рН                                             | -      | 6.76              | 7.11              | 7.59              | 7.16              | 7.05              | 7.29              | 7.52              | 7.57              | 7.54              |
| 2    | Odour                                          | -      | Agreeable         |
| 3    | Colour                                         | mg/l   | BDL(DL:2.0)       |
| 4    | Turbidity                                      | N.T. U | 3.45              | 1.70              | 2.70              | 0.75              | 1.19              | 1.66              | 7.75              | 1.10              | 4.71              |
| 5    | Total Dissolved<br>Solids (as TDS)             | mg/l   | 277               | 1268              | 493               | 503               | 186.0             | 7.29              | 565               | 484               | 591               |
| 6    | Aluminium as Al                                | mg/l   | BDL(DL:0.01)      |
| 7    | Anionic Surface-<br>Active Agents as<br>(MBAS) | mg/l   | BDL(DL:0.05)      |
| 8    | Boron as B                                     | mg/l   | BDL(DL:0.25)      |
| 9    | Calcium as Ca                                  | mg/l   | 40.08             | 35.27             | 80.16             | 52.91             | 32.06             | 89.78             | 16.03             | 83.37             | 83.37             |
| 10   | Chloride as Cl                                 | mg/l   | 29.0              | 240.0             | 57.0              | 50.0              | 15.00             | 118.0             | 45.0              | 40.0              | 47.0              |
| 11   | Copper as Cu                                   | mg/l   | 0.012             | 0.007             | 0.014             | 0.011             | 0.032             | 0.005             | 0.008             | 0.018             | 0.013             |
| 12   | Fluoride as F                                  | mg/l   | 0.12              | 0.98              | 0.46              | 1.10              | 0.19              | 1.00              | 0.94              | 0.55              | 1.10              |
| 13   | Residual Free<br>Chlorine                      | mg/l   | BDL(DL:0.1)       |
| 14   | Iron as Fe                                     | mg/l   | 0.228             | 0.125             | 0.157             | 0.238             | 0.989             | 0.153             | 0.172             | 0.339             | 0.301             |
| 15   | Magnesium as<br>Mg                             | mg/l   | 14.58             | 126.62            | 32.08             | 44.71             | 5.83              | 99.14             | 69.01             | 39.85             | 55.40             |
| 16   | Manganese as<br>Mn                             | mg/l   | 0.025             | 0.032             | 0.086             | 0.027             | 0.077             | 0.060             | 0.354             | 0.027             | 0.028             |
| 17   | Mineral Oil                                    | mg/l   | BDL(DL:0.5)       |
| 18   | Nitrate as NO3                                 | mg/l   | 12.30             | 182.0             | 3.76              | 49.60             | 3.12              | 12.10             | 10.63             | 3.58              | 17.20             |
| 19   | Phenolic<br>Compounds as<br>C6H5OH             | mg/l   | BDL<br>(DL:0.001) |
| 20   | Selenium as Se                                 | mg/l   | BDL<br>(DL:0.005) |
| 21   | Sulphate as SO4                                | mg/l   | 30.67             | 125.41            | 63.39             | 57.25             | 13.61             | 129.96            | 62.25             | 47.26             | 82.02             |
| 22   | Total Alkalinity as CaCO3                      | mg/l   | 140               | 484               | 304               | 392               | 96                | 320               | 376               | 364               | 413               |
| 23   | Total Hardness                                 | mg/l   | 160               | 608               | 332               | 316               | 104               | 632               | 324               | 372               | 436               |

|    | as CaCO3              |        |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|----|-----------------------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 24 | Zinc as Zn            | mg/l   | 0.057              | 0.079              | 0.084              | 0.073              | 0.227              | 0.064              | 0.064              | 0.089              | 0.108              |
| 25 | Cadmium as Cd         | mg/l   | BDL(DL:0.01)       |
| 26 | Cyanide as CN         | mg/l   | BDL(DL:0.01)       |
| 27 | Lead as Pb            | mg/l   | BDL<br>(DL:0.005)  |
| 28 | Mercury as Hg         | mg/l   | BDL<br>(DL:0.0002) |
| 29 | Nickel (as Ni)        | mg/l   | BDL(DL:0.01)       |
| 30 | Total Arsenic (as As) | mg/l   | BDL<br>(DL:0.005)  |
| 31 | E. coli               | /100ml | Not Detected       | Not Detected       | Not Detected       | Detected           | Not Detected       | Not Detected       | Not Detected       | Not Detected       | Not Detected       |

August 2024

| S.N. | Parameters                                     | unit   | GW-01        | GW-02        | GW-03        | GW-04        | GW-05        | GW-06        | GW-07        | GW-08        | GW-9         |
|------|------------------------------------------------|--------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| 1    | рН                                             | -      | 7.98         | 7.85         | 8.12         | 8.06         | 7.85         | 8.23         | 7.9          | 7.9          | 7.93         |
| 2    | Odour                                          | -      | Agreeable    |
| 3    | Colour                                         | mg/l   | BDL(DL:2.0)  |
| 4    | Turbidity                                      | N.T. U | BDL(DL:1.0)  |
| 5    | Total Dissolved<br>Solids (as TDS)             | mg/l   | 528          | 814          | 1865         | 932          | 924          | 544          | 942          | 652          | 1012         |
| 6    | Aluminium as Al                                | mg/l   | 0.28         | BDL(DL:0.01) |
| 7    | Anionic Surface-<br>Active Agents as<br>(MBAS) | mg/l   | BDL(DL:0.05) |
| 8    | Boron as B                                     | mg/l   | BDL(DL:0.25) |
| 9    | Calcium as Ca                                  | mg/l   | 51           | 51           | 29           | 58           | 47           | 54           | 54           | 22.4         | 86           |
| 10   | Chloride as Cl                                 | mg/l   | 67           | 116          | 297          | 68           | 116          | 59           | 118          | 14           | 164          |
| 11   | Copper as Cu                                   | mg/l   | BDL(DL:0.02) |
| 12   | Fluoride as F                                  | mg/l   | BDL(DL:0.1)  |
| 13   | Residual Free<br>Chlorine                      | mg/l   | BDL(DL:0.1)  |
| 14   | Iron as Fe                                     | mg/l   | BDL(DL:0.05) |
| 15   | Magnesium as<br>Mg                             | mg/l   | 40.9         | 39.5         | 25.3         | 41.5         | 27.5         | 34.8         | 37.2         | 37.4         | 69.4         |
| 16   | Manganese as                                   | mg/l   | BDL(DL:0.02) |

|    | Mn                                 |        |                    |                    |                    |                    |                    |                    |                    |                    |                    |
|----|------------------------------------|--------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 17 | Mineral Oil                        | mg/l   | BDL(DL:0.5)        |
| 18 | Nitrate as NO3                     | mg/l   | 31.4               | BDL(DL:0.2)        | BDL(DL:0.2)        | 32.6               | BDL(DL:0.2)        | 11.6               | 8.9                | 25.6               | 12.4               |
| 19 | Phenolic<br>Compounds as<br>C6H5OH | mg/l   | BDL<br>(DL:0.001)  |
| 20 | Selenium as Se                     | mg/l   | BDL<br>(DL:0.005)  |
| 21 | Sulphate as SO4                    | mg/l   | 87                 | 65                 | 142                | 54                 | 59                 | 27                 | 97                 | 52                 | 88                 |
| 22 | Total Alkalinity as CaCO3          | mg/l   | 270                | 356                | 749                | 272                | 360                | 372                | 349                | 437                | 312                |
| 23 | Total Hardness as CaCO3            | mg/l   | 298                | 292                | 178                | 318                | 232                | 280                | 290                | 212                | 504                |
| 24 | Zinc as Zn                         | mg/l   | BDL(DL:0.02)       |
| 25 | Cadmium as Cd                      | mg/l   | BDL(DL:0.01)       |
| 26 | Cyanide as CN                      | mg/l   | BDL(DL:0.02)       |
| 27 | Lead as Pb                         | mg/l   | BDL(DL:0.01)       |
| 28 | Mercury as Hg                      | mg/l   | BDL<br>(DL:0.0002) |
| 29 | Nickel (as Ni)                     | mg/l   | BDL(DL:0.01)       |
| 30 | Total Arsenic (as As)              | mg/l   | BDL<br>(DL:0.005)  |
| 31 | E. coli                            | /100ml | Detected           | Detected           | Detected           | Detected           | Detected           | Not Detected       | Not Detected       | Detected           | Detected           |

----- End of Report -----



(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024       |            |  |  |
|--------------------------------------------|-------------------------|------------|--|--|
| Test report No - 08/2024-007               |                         |            |  |  |
| Source of Sample: Charadagadia             | Sample receiving Date : | 09.08.2024 |  |  |
| Type of Sample: well water                 | Sample Analysis Date :  | 09.08.2024 |  |  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | ) NEW            | er IS 10500:2012(Latest<br>ersion) | Test Result |
|----------|---------------------------------------------|------------------------------|------------------|------------------------------------|-------------|
|          |                                             |                              | Acceptable limit | Permissible Limit                  |             |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                | 5                                  | 0.78        |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5          | No relaxation                      | 6.96@25.0   |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500              | 2000                               | 1241.0      |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200              | 600                                | 604.0       |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75               | 200                                | 36.07       |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30               | 100                                | 124.9       |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200              | 600                                | 456.0       |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250              | 1000                               | 180.0       |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200              | 400                                | 138.13      |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0              | 1.5                                | 0.72        |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3              | No relaxation                      | 0.168       |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05             | 1.5                                | 0.031       |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1              | 0.3                                | 0.009       |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0              | 15.0                               | 0.107       |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01             | No relaxation                      | < 0.001     |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003            | No relaxation                      | < 0.001     |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05             | No relaxation                      | < 0.001     |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02             | No relaxation                      | <0.001      |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O

A LIVE

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha

| TEST REPORT |  |
|-------------|--|
|             |  |

Issued to: TATA STEEL LIMITED, MERAMANDALI

Date: 23.09.2024

Test report No - 08/2024-007

Source of Sample: Charadagadia

Sample receiving Date: 09.08.2024

Type of Sample: well water Sample Analysis Date:

09.08.2024

|     | 7.1                                |                 |                                         |               |           |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 1804      |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -             | 7.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.618     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 162.0     |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | -             | 167.95    |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             | 5.55      |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542      |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542      |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".





(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

| issued to: | TATA STEEL LIMITED, | MERAMANDALI | Date : 23.09.2024 |
|------------|---------------------|-------------|-------------------|
|------------|---------------------|-------------|-------------------|

Test report No - 08/2024-012

Source of Sample: ETAPA Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | 10        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20, | *Odour                             | Part 5          | Agreeable                               | Agreeable.    | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 1123      |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -             | 12.0      |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.091     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 4.62      |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | -             | 141.75    |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             | 11.35     |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 212       |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 9         |

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



## (A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024                 |
|--------------------------------------------|-----------------------------------|
| Test report No - 08/2024-012               |                                   |
| Source of Sample: ETAPA                    | Sample receiving Date: 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date: 09.08.2024  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as p | Test Result       |           |
|----------|---------------------------------------------|------------------------------|-------------------|-------------------|-----------|
|          |                                             |                              | Acceptable limit  | Permissible Limit |           |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                 | 5                 | 14.82     |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5           | No relaxation     | 7.13@25.0 |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500               | 2000              | 655.0     |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200               | 600               | 284.0     |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                | 200               | 8.01      |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                | 100               | 64.15     |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200               | 600               | 416.0     |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250               | 1000              | 92.0      |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200               | 400               | 1.42      |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0               | 1.5               | 1.02      |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3               | No relaxation     | 0.285     |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05              | 1.5               | 0.029     |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1               | 0.3               | 0.479     |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0               | 15.0              | 0.224     |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01              | No relaxation     | < 0.001   |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003             | No relaxation     | < 0.001   |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05              | No relaxation     | < 0.001   |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02              | No relaxation     | <0.001    |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



#### (A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024       |            |  |
|--------------------------------------------|-------------------------|------------|--|
| Test report No - 08/2024-011               |                         |            |  |
| Source of Sample: GALPADA                  | Sample receiving Date : | 09.08.2024 |  |
|                                            |                         |            |  |

| SI  | Characteristics                             | Test Method                           | Requirements as p | er IS 10500:2012(Latest | Test Result |
|-----|---------------------------------------------|---------------------------------------|-------------------|-------------------------|-------------|
| No  |                                             | (P)of IS:3025                         | V                 | ersion)                 |             |
|     |                                             | · · · · · · · · · · · · · · · · · · · | Acceptable limit  | Permissible Limit       |             |
| 1.  | Turbidity, NTU                              | , Part 10                             | 1                 | 5                       | 0.59        |
| 2.  | pH@Temp° C                                  | Part 11                               | 6.5-8.5           | No relaxation           | 6.88@25.0   |
| 3.  | Total Dissolved Solids mg/L                 | Part 16                               | 500               | 2000                    | 252.0       |
| 4.  | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                               | 200               | 600                     | 166.0       |
| 5.  | Calcium as Ca, mg/L                         | Part 40                               | 75                | 200                     | 54.51       |
| 6.  | Magnesium as Mg, mg/L                       | Part 46                               | 30                | 100                     | 7.29        |
| 7.  | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                               | 200               | 600                     | 158.0       |
| 8.  | Chloride as Cl, mg/L                        | Part 32                               | 250               | 1000                    | 22.0        |
| 9.  | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                               | 200               | 400                     | 21.26       |
| 10. | Fluoride as F, mg/L                         | Part 60                               | 1.0               | 1.5                     | 0.22        |
| 11. | Iron as Fe, mg/L                            | Part 53                               | 0.3               | No relaxation           | 0.29        |
| 12. | Copper as Cu, mg/L                          | Part 42                               | 0.05              | 1.5                     | 0.025       |
| 13. | Manganese as Mn, mg/L                       | APHA(PART 3111B)                      | 0.1               | 0.3                     | 0.048       |
| 14. | Zinc as Zn, mg/L                            | Part 49                               | 5.0               | 15.0                    | 0.096       |
| 15. | Lead as Pb, mg/L                            | Part 47                               | 0.01              | No relaxation           | < 0.001     |
| 16. | Cadmium as Cd, mg/L                         | Part 41                               | 0.003             | No relaxation           | <0.001      |
| 17. | Chromium as Cr, mg/L                        | Part 52                               | 0.05              | No relaxation           | < 0.001     |
| 18. | Nickel as Ni, mg/l                          | Part 54                               | 0.02              | No relaxation           | <0.001      |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- The sample is drawn by EC Laboratory & result relates to the sample tested.
- This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 23.09.2024

Test report No - 08/2024-011

Source of Sample: GALPADA Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 389       |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -             | 3.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.031     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 2.65      |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | -             | 15.09     |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             | 0.70      |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542      |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 5         |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



## (A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT



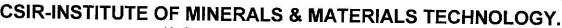
| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024                 |
|--------------------------------------------|-----------------------------------|
| Test report No - 08/2024-003               |                                   |
| Source of Sample: Ganthigadia              | Sample receiving Date: 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date: 09.08.2024  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | -                | er IS 10500:2012(Latest<br>ersion) | Test Result                                                                                      |
|----------|---------------------------------------------|------------------------------|------------------|------------------------------------|--------------------------------------------------------------------------------------------------|
|          |                                             |                              | Acceptable limit | Permissible Limit                  | 2.43<br>7.60@25.0<br>473.0<br>324.0<br>36.87<br>56.38<br>240.0<br>40.0<br>115.7<br>0.95<br>0.090 |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                | 5                                  | 2.43                                                                                             |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5          | No relaxation                      | 7.60@25.0                                                                                        |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500              | 2000                               | 473.0                                                                                            |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200              | 600                                | 324.0                                                                                            |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75               | 200                                | 36.87                                                                                            |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30               | 100                                | 56.38                                                                                            |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200              | 600                                | 240.0                                                                                            |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250              | 1000                               | 40.0                                                                                             |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200              | 400                                | 115.7                                                                                            |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0              | 1.5                                | 0.95                                                                                             |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3              | No relaxation                      | 0.090                                                                                            |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05             | 1.5                                | 0.029                                                                                            |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1              | 0.3                                | 0.018                                                                                            |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0              | 15.0                               | 0.117                                                                                            |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01             | No relaxation                      | <0.001                                                                                           |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003            | No relaxation                      | <0.001                                                                                           |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05             | No relaxation                      | <0.001                                                                                           |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02             | No relaxation                      | <0.001                                                                                           |

**Authorized Signatory** 



Senior Principal Scientistics


Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O





(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

| Issued to: | TATA STEEL LIMITED, MERAMANDALI | Date: 23.09,2024 |
|------------|---------------------------------|------------------|
|            |                                 |                  |

Test report No - 08/2024-003

Source of Sample: Ganthigadia Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15                                     | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|----------------------------------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable                              | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -                                      | 773       |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -                                      | 8.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -                                      | 0.247     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation                          | 40.5      |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | 10 000 0000 0000 0000 0000 0000 0000 0 | 29.15     |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -                                      | 18.66     |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0                                    | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation                          | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation                          | >542      |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation                          | 21        |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236.

E mail - arakshita@immt.res.in

#### NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha TEST REPORT

| Issued to: | TATA STEEL LIMITED, MERAMANDALI | Date: 23.09.2024 |
|------------|---------------------------------|------------------|
|            |                                 |                  |

Test report No - 08/2024-004

Source of Sample: Khaliberena Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 481       |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | _                                       | -             | 5.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.037     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 5.65      |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | _             | 15.12     |
| 26. | Potassium, mg/l                    | Part 45         | :-                                      | -             | 3.43      |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542      |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 348       |

**Authorized Signatory** 

Dr. Arakshita Majainstitute of Minerals & Materials (ND).

Senior Principal Gerentst
Environmental & Sustainability David
Environmental & Sustainability David
Environmental & Materials (Environmental & Naturals)
Environmental & Materials (Environmental & Naturals)
Environmental & Sustainability David
Environmental & Materials (Environmental & Naturals)
Environmental & Sustainability David

E mail - arakshita@immt.res.in

#### NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



## (A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024                 |  |  |
|--------------------------------------------|-----------------------------------|--|--|
| Test report No - 08/2024-004               |                                   |  |  |
| Source of Sample: Khaliberena              | Sample receiving Date: 09.08.2024 |  |  |
| Type of Sample: Well water                 | Sample Analysis Date: 09.08.2024  |  |  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | 31               | Requirements as per IS 10500:2012(Latest Version) |           |
|----------|---------------------------------------------|------------------------------|------------------|---------------------------------------------------|-----------|
|          |                                             |                              | Acceptable limit | Permissible Limit                                 |           |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                | 5                                                 | 1.17      |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5          | No relaxation                                     | 7.22@25.0 |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500              | 2000                                              | 267.0     |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200              | 600                                               | 176.0     |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75               | 200                                               | 14.43     |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30               | 100                                               | 34.02     |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200              | 600                                               | 200.0     |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250              | 1000                                              | 18.0      |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200              | 400                                               | 35.98     |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0              | 1.5                                               | 0.59      |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3              | No relaxation                                     | 0.053     |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05             | 1.5                                               | 0.049     |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1              | 0.3                                               | 0.013     |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0              | 15.0                                              | 0.128     |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01             | No relaxation                                     | <0.001    |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003            | No relaxation                                     | <0.001    |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05             | No relaxation                                     | <0.001    |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02             | No relaxation                                     | <0.001    |

**Authorized Signatory** 

Dr. Arakshita Maihi

Senior Principal Scientist

Phone: 0674-2379236, E mail - arakshita@immt.res.in

NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



# (A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date: 23.09.2024        |            |  |
|--------------------------------------------|-------------------------|------------|--|
| Test report No - 08/2024-009               | L                       |            |  |
| Source of Sample: KHARAGPRASAD             | Sample receiving Date : | 09.08.2024 |  |
| Type of Sample: Well water                 | Sample Analysis Date :  | 09.08.2024 |  |

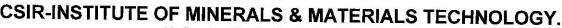
| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as per IS 10500:2012(Latest Version) |                   | Test Result |  |
|----------|---------------------------------------------|------------------------------|---------------------------------------------------|-------------------|-------------|--|
|          |                                             | 200, 00 00                   | Acceptable limit                                  | Permissible Limit | 1           |  |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                                                 | 5                 | 0.56        |  |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5                                           | No relaxation     | 6.46@25.0   |  |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500                                               | 2000              | 258.0       |  |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200                                               | 600               | 168.0       |  |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                                                | 200               | 46.49       |  |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                                                | 100               | 12.64       |  |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200                                               | 600               | 140.0       |  |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250                                               | 1000              | 30.0        |  |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200                                               | 400               | 29.19       |  |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0                                               | 1.5               | 0.21        |  |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3                                               | No relaxation     | 0.065       |  |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05                                              | 1.5               | 0.031       |  |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1                                               | 0.3               | 0.019       |  |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0                                               | 15.0              | 0.199       |  |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01                                              | No relaxation     | < 0.001     |  |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003                                             | No relaxation     | <0.001      |  |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05                                              | No relaxation     | <0.001      |  |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02                                              | No relaxation     | <0.001      |  |

Authorized Signatory



#### Dr. Arakshita Maihi

Senior Principal Scientist


Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



W.

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

| Issued to: | TATA STEEL LIMITED, MERAMANDALI | Date: 23.09.2024 |
|------------|---------------------------------|------------------|
|            |                                 |                  |

Test report No - 08/2024-009

Source of Sample: KHARAGPRASAD Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 432       |
| 22. | *Total Suspended Solid, mg/l       | Part 17         |                                         |               | 3.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       |               | 0.217     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45 No relaxation                        |               | 20.9      |
| 25. | Sodium, mg/l                       | Part 45         | -                                       |               | 14.59     |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             |           |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 0.2           |           |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01 No relaxation                      |               | <0.1      |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542      |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 17        |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



#### (A Govt. of India Autonomous Body)

## **Environmental Chemical Laboratory**





#### **TEST REPORT**

Issued to: Tata Steel Limited, Meramandali

Date: 23.09.2024

Test Report No.08/2024-001

Sample Condition: In Plastic Jar

Sample quantity: 2 Litre

Sampling Method: APHA1060B

Source of Sample : Kisinda UP & Down stream

Letter Reference:

Sample Collected on: 09.08.2024

Sample Analysed on: 09.08.2024

| SI No | Characteristics                    | Test Method          | Kisinda UP- | Kisinda down | Standard as per Class |
|-------|------------------------------------|----------------------|-------------|--------------|-----------------------|
|       |                                    | As Per APHA          | stream      | stream       | C-IS 2296/CPCB/SPCB   |
| 1     | pH Value                           | APHA 4500H+ B        | 7.66        | 7.69         | 6.0-9.0               |
| 2     | Colour                             | APHA 2120 B, C       | <5          | <5           | 300 (max)             |
| 3     | Electrical<br>Conductivity, µs/cm  | APHA 2510 B          | 447         | 481          |                       |
| 4     | Total Dissolved<br>Solids, mg/l    | APHA 2540 C          | 232         | 263          | 1500 (max)            |
| 5     | Dissolved Oxygen,<br>mg/l          | APHA 2540 C          | 6.2         | 5.8          | 4 (min)               |
| 6     | BOD (3) days at 27°C               | APHA 5210 B          | 5.2         | 1.6          | 3 (max)               |
| 7     | Chloride, mg/l                     | APHA 4500Cl- B       | 26.0        | 26.0         | 600 (max)             |
| 8     | Fluoride as F, mg/l                | APHA 4500F- C        | 3.1         | 2.6          | 1.5 (max)             |
| 9     | Sulphates (SO <sub>4</sub> ), mg/l | APHA 4500<br>SO42-E  | 23.1        | 40.2         | 400 (max)             |
| 10    | Nitrate as NO <sub>3</sub> , mg/l  | APH4500 NO3- E       | 5.55        | 3.92         | 50 (max)              |
| 11    | Hexa Chromium as<br>Cr +6, mg/l    | APHA 3500Cr B        | 0.016       | 0.024        | 0.05                  |
| 12    | Cyanide as CN, mg/l                | APHA 4500 CN-<br>C,D | <0.03       | <0.03        | 0.05 (max)            |
| 13    | Copper as Cu, mg/l                 | APHA 3111 B,C        | 0.019       | 0.026        | 1.5 (max)             |
| 14    | Iron as Fe, mg/l                   | APHA 3500Fe, B       | 0.128       | 0.149        | 0.5 (max)             |
| 15    | Cadmium as Cd ,<br>mg/l            | АРНА 3111 В,С        | <0.003      | <0.003       | 0.01 (max)            |
| 16    | Selenium as Se,<br>mg/l            | APHA 3114 B          | <0.001      | <0.001       | 0.05 (max)            |



## (A Govt. of India Autonomous Body)

## **Environmental Chemical Laboratory**





#### **TEST REPORT**

| 17 | Arsenic as As, mg/l             | APHA 3114 B    | < 0.001 | <0.001 | 0.2 (max) |
|----|---------------------------------|----------------|---------|--------|-----------|
| 18 | Lead as Pb(max), mg/l           | APHA 3111 B,C  | <0.001  | <0.001 | 0.1 (max) |
| 19 | Zinc as Zn(max),<br>mg/l        | АРНА 3111 В,С  | 0.129   | 0.053  | 15 (max)  |
| 20 | Sodium Absorption<br>Ratio      | By Calculation | 4.95    | 6.45   |           |
| 21 | Total Coliform                  | APHA 9221 B    | 345     | >542   | 5000      |
| 22 | Fecal Coliform                  | APHA 9221 B    | 109     | 278    | 300       |
| 23 | Manganese as Mn, mg/l           |                | 0.039   | 0.045  | 0.1       |
| 24 | Sodium as Na, mg/l              |                | 23.67   | 31.24  |           |
| 25 | Potassium as K,<br>mg/l         |                | 3.66    | 3.69   |           |
| 26 | Nickel as Ni, mg/l              |                | < 0.001 | <0.001 | 0.02      |
| 27 | Chemical Oxygen<br>Demand, mg/l |                | 24.0    | 28.0   |           |
| 28 | Free Ammonia, mg/l              |                | <0.01   | <0.01  | 0.5       |
| 29 | Boron as B, mg/l                | 100000         | <0.01   | <0.01  | 0.5       |

Authorized Signatory

Dr Arakshita Majhi

Senior Principal Scientist

Phone - 0674-2379236

E mail I.D- arakshita@immt.res.in



#### (A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024       |            |
|--------------------------------------------|-------------------------|------------|
| Test report No - 08/2024-008               |                         | ******     |
| Source of Sample: KOCHILAMARA              | Sample receiving Date : | 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date :  | 09.08.2024 |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as p | Test Result       |           |
|----------|---------------------------------------------|------------------------------|-------------------|-------------------|-----------|
|          |                                             |                              | Acceptable limit  | Permissible Limit |           |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                 | 5                 | 0.43      |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5           | No relaxation     | 7.21@25.0 |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500               | 2000              | 643.0     |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200               | 600               | 420.0     |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                | 200               | 76.15     |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                | 100               | 55.89     |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200               | 600               | 362.0     |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250               | 1000              | 58.0      |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200               | 400               | 102.15    |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0               | 1.5               | 0.81      |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3               | · No relaxation   | 0.169     |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05              | 1.5               | 0.028     |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1               | 0.3               | 0.034     |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0               | 15.0              | 0.078     |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01              | No relaxation     | <0.001    |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003             | No relaxation     | < 0.001   |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05              | No relaxation     | 0.206     |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02              | No relaxation     | <0.001    |

**Authorized Signatory** 

Senior Principal Scientist Tue of March 1973 Goistia, 1971.

Phone: 0674-237922 E mail - arakshita@immt.res.in

#### NOTES:

- The sample is drawn by EC Laboratory & result relates to the sample tested. 1.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha **TEST REPORT** 

| 135GEG TO . TATA STEEL LIMITED, MEKAMANDALI | Date : 23.09.2024                 |
|---------------------------------------------|-----------------------------------|
| Test report No - 08/2024-008                |                                   |
| Source of Sample: KOCHILAMARA               | Sample receiving Date: 09.08.2024 |
| Type of Sample: Well water                  | Sample Analysis Date: 09.08.2024  |

| 19. | *Color, Hazen units          | Part 4  | 5         | 15        | <5        |
|-----|------------------------------|---------|-----------|-----------|-----------|
| 20. | *Odour                       | Part 5  | Agreeable | Agreeable | Agreeable |
| 21. | *Conductivity, µs/cm         | Part 14 | -         | -         | 1052      |
| 22. | *Total Suspended Solid, mg/l | Part 17 | -         | -         | 2.0       |

|     | a suspended Sond, mg/1             | Fait 17         | _                                       | -             | 2.0    |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|--------|
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.341  |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 68.0   |
| 25. | Sodium, mg/l                       | Part 45         | -                                       | -             | 78.67  |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             | 2.14   |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1   |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001 |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | >542   |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 7      |

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientistusian and Arakshita Majhi

Senior Principal Scientistusian and Arakshita Majhi

Senior Principal Scientistusian and Arakshita Majhi

Phone: 0674-2379236,

E mail - arakshita

E mail - arakshita@immt.res.in

**NOTES:** 

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.

4. Latest version of test methods used as per latest specification.

5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

6. Testing parameters which are not set limitation has marked as "-".



## (A Govt. of India Autonomous Body)

## **Environmental Chemical Laboratory**

## Bhubaneswar,Odisha (An NABL Accredited Laboratory)



#### TEST REPORT

Issued to: Tata Steel Limited, Meramandali

Date: 23.09.2024

Test Report No.08/2024-002

Sample Condition: In Plastic Jar

Sample quantity: 2 Litre

Sampling Method: APHA1060B

Source of Sample :Lingra UP & Down stream

Letter Reference:

Sample Collected on: 09.08.2024

Sample Analysed on: 09.08.2024

| SI No | Characteristics                       | Test Method<br>As Per APHA | Lingra UP-<br>stream | Lingra down | Standard as per Class<br>C-IS 2296/CPCB/SPCB |
|-------|---------------------------------------|----------------------------|----------------------|-------------|----------------------------------------------|
| 1     | pH Value                              | APHA 4500H+ B              | 7.45                 | 7.43        | 6.0-9.0                                      |
| 2     | Colour                                | APHA 2120 B, C             | <5                   | <5          | 300 (max)                                    |
| 3     | Electrical<br>Conductivity, μs/cm     | APHA 2510 B                | 270                  | 272         |                                              |
| 4     | Total Dissolved<br>Solids, mg/l       | АРНА 2540 С                | 145.0                | 151.0       | 1500 (max)                                   |
| 5     | Dissolved Oxygen,<br>mg/l             | APHA 2540 C                | 5.4                  | 5.8         | 4 (min)                                      |
| 6     | BOD (3) days at 27°C                  | APHA 5210 B                | 1.6                  | 2.0         | 3 (max)                                      |
| 7     | Chloride, mg/l                        | APHA 4500Cl- B             | 16.0                 | 14.0        | 600 (max)                                    |
| 8     | Fluoride as F, mg/l                   | APHA 4500F- C              | 0.41                 | 0.41        | 1.5 (max)                                    |
| 9     | Sulphates (SO <sub>4</sub> ),<br>mg/l | APHA 4500<br>SO42- E       | 5.11                 | 21.44       | 400 (max)                                    |
| 10    | Nitrate as NO <sub>3</sub> , mg/l     | APH4500 NO3- E             | 2.72                 | 2.48        | 50 (max)                                     |
| 11    | Hexa Chromium as<br>Cr +6, mg/l       | APHA 3500Cr B              | 0.012                | 0.014       | 0.05                                         |
| 12    | Cyanide as CN, mg/l                   | APHA 4500 CN-C,D           | <0.03                | <0.03       | 0.05 (max)                                   |
| 13    | Copper as Cu, mg/l                    | APHA 3111 B,C              | 0.020                | 0.019       | 1.5 (max)                                    |
| 14    | Iron as Fe, mg/l                      | APHA 3500Fe, B             | 0.369                | 0.702       | 0.5 (max)                                    |
| 15    | Cadmium as Cd ,<br>mg/l               | APHA 3111 B,C              | <0.001               | <0.001      | 0.01 (max)                                   |





#### (A Govt. of India Autonomous Body)

## **Environmental Chemical Laboratory**

## Bhubaneswar,Odisha (An NABL Accredited Laboratory)



#### **TEST REPORT**

| 16 | Selenium as Se,<br>mg/l      | APHA 3114 B    | <0.001  | <0.001 | 0.05 (max) |
|----|------------------------------|----------------|---------|--------|------------|
| 17 | Arsenic as As, mg/l          | APHA 3114 B    | < 0.001 | <0.001 | 0.2 (max)  |
| 18 | Lead as Pb(max),<br>mg/l     | APHA 3111 B,C  | <0.001  | <0.001 | 0.1 (max)  |
| 19 | Zinc as Zn(max),<br>mg/l     | APHA 3111 B,C  | 0.063   | 0.081  | 15 (max)   |
| 20 | Sodium Absorption<br>Ratio   | By Calculation | 3.88    | 3.56   |            |
| 21 | Total Coliform<br>(CFU/ml)   | APHA 9221 B    | 542     | >542   | 5000       |
| 22 | Fecal Coliform (CFU/ml)      | APHA 9221 B    | 348     | 120    | 300        |
| 23 | Manganese as Mn, mg/l        |                | 0.083   | 0.064  | 0.1        |
| 24 | Sodium as Na, mg/l           |                | 15.12   | 14.69  |            |
| 25 | Potassium as K, mg/l         |                | 3.43    | 3.37   |            |
| 26 | Nickel as Ni, mg/l           |                | <0.001  | <0.001 | 0.02       |
| 27 | Chemical Oxygen Demand, mg/l |                | 12.0    | 16.0   |            |
| 28 | Free Ammonia, mg/l           |                | <0.01   | <0.01  | 0.5        |
| 29 | Boron as B, mg/l             |                | <0.01   | <0.01  | 0.5        |

Authorized Signatory

Dr Arakshita Majhi

Senior Principal Scientist

Phone - 0674-2379236

E mail I.D- arakshita@immt.res.in



(A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha **TEST REPORT** 

| Issued to: | TATA STEEL LIMITED | , MERAMANDALI | Date : 23.09.2024 |
|------------|--------------------|---------------|-------------------|
|            |                    |               |                   |

Test report No - 08/2024-010

Source of Sample: MOTANGA Sample receiving Date : 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 1094      |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -             | 5.0       |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.102     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 25.6      |
| 25. | Sodium, mg/l                       | Part 45         |                                         |               | 77.71     |
| 26. | Potassium, mg/l                    | Part 45         | •                                       | -             | 2.99      |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 221       |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 79        |

Authorized Signatory

Dr. Arakshita Majhi at - 3 1. Senior Principal C

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024                 |
|--------------------------------------------|-----------------------------------|
| Test report No - 08/2024-010               |                                   |
| Source of Sample: MOTANGA                  | Sample receiving Date: 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date: 09.08,2024  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as per IS 10500:2012(Latest Version) |                   | Test Result |
|----------|---------------------------------------------|------------------------------|---------------------------------------------------|-------------------|-------------|
|          |                                             |                              | Acceptable limit                                  | Permissible Limit |             |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                                                 | 5                 | 0.73        |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5                                           | No relaxation     | 6.97@25.0   |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500                                               | 2000              | 697.0       |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200                                               | 600               | 418.0       |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                                                | 200               | 84.17       |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                                                | 100               | 50.54       |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200                                               | 600               | 326.0       |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250                                               | 1000              | 70.0        |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200                                               | 400               | 139.13      |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0                                               | 1.5               | 0.80        |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3                                               | No relaxation     | 0.068       |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05                                              | 1.5               | 0.026       |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1                                               | 0.3               | 0.014       |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0                                               | 15.0              | 0.197       |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01                                              | No relaxation     | <0.001      |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003                                             | No relaxation     | < 0.001     |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05                                              | No relaxation     | <0.001      |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02                                              | No relaxation     | <0.001      |

**Authorized Signatory** 



Senior Principal Scientist

Phone: 0674-2379236, E mail - arakshita@immt.res.in

#### **NOTES:**

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



#### (A Govt. of India Autonomous Body) **Environmental Chemical Laboratory** Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2          | 024        |
|--------------------------------------------|-------------------------|------------|
| Test report No - 08/2024-013               |                         |            |
| Source of Sample: NARENDRAPUR              | Sample receiving Date : | 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date :  | 09.08.2024 |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 |                  | uirements as per IS 10500:2012(Latest<br>Version) |           |
|----------|---------------------------------------------|------------------------------|------------------|---------------------------------------------------|-----------|
|          |                                             |                              | Acceptable limit | Permissible Limit                                 |           |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                | 5                                                 | 4.08      |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5          | No relaxation                                     | 7.22@25.0 |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500              | 2000                                              | 535.0     |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200              | 600                                               | 318.0     |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75               | 200                                               | 11.22     |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30               | 100                                               | 70.47     |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200              | 600                                               | 264.0     |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250              | 1000                                              | 48.0      |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200              | 400                                               | 79.51     |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0              | 1.5                                               | 0.68      |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3              | No relaxation                                     | 0.027     |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05             | 1.5                                               | 0.027     |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1              | 0.3                                               | 0.008     |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0              | 15.0                                              | 0.086     |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01             | No relaxation                                     | < 0.001   |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003            | No relaxation                                     | < 0.001   |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05             | No relaxation                                     | <0.001    |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02             | No relaxation                                     | <0.001    |

**Authorized Signatory** 

Dr. Arakshita Majhi Senior Principal Scientist S

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 23.09.2024

Test report No - 08/2024-013

Source of Sample: NARENDRAPUR Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4          | 5                                       | 15            | <5        |
|-----|------------------------------------|-----------------|-----------------------------------------|---------------|-----------|
| 20. | *Odour                             | Part 5          | Agreeable                               | Agreeable     | Agreeable |
| 21. | *Conductivity, µs/cm               | Part 14         | -                                       | -             | 842       |
| 22. | *Total Suspended Solid, mg/l       | Part 17         | -                                       | -             | 10.0      |
| 23. | *Nitrite as NO2,mg/L               | Part 34         | -                                       | -             | 0.267     |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34         | 45                                      | No relaxation | 51.9      |
| 25. | Sodium, mg/I                       | Part 45         | -                                       |               | 55.50     |
| 26. | Potassium, mg/l                    | Part 45         | -                                       | -             | 6.39      |
| 27. | Residual Free Chlorine, mg/l       | Part 26         | 0.2                                     | 1.0           | <0.1      |
| 28. | Arsenic as As, mg/l                | Part 37         | 0.01                                    | No relaxation | <0.001    |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 348       |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019 | Shall not be detectable in 100ml sample | No relaxation | 11        |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

1. The sample is drawn by EC Laboratory & result relates to the sample tested.

2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.

- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



10.00 miles 10.00

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024                 |  |  |  |  |
|--------------------------------------------|-----------------------------------|--|--|--|--|
| Test report No - 08/2024-005               |                                   |  |  |  |  |
| Source of Sample : SARAPA                  | Sample receiving Date: 09.08.2024 |  |  |  |  |
| Type of Sample: Well water                 | Sample Analysis Date: 09.08.2024  |  |  |  |  |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Test Result       |               |
|----------|---------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|
|          |                                             |                              | Acceptable limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Permissible Limit | _             |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                 | 0.49          |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No relaxation     | 7.48@25.0     |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000              | 505.0         |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600               | 390.0         |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200               | 79.36         |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100               | 46.66         |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 600               | <del> </del>  |
| 8.       | Chloride as CI, mg/L                        | Part 32                      | 250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000              | 304.0<br>42.0 |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400               |               |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5               | 92.59         |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No relaxation     | 0.55          |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5               | 0.204         |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3               | 0.024         |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del> </del>      | 0.018         |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0              | 0.098         |
| 16.      | Cadmium as Cd, mg/L                         |                              | S. State Control of the Control of t | No relaxation     | < 0.001       |
|          |                                             | Part 41                      | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | No relaxation     | < 0.001       |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No relaxation     | 0.153         |
| 18       | Nickel as Ni, mg/l                          | Part 54: 31111               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No relaxation     | <0.001        |

Authorized Signatory



#### Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

Issued to: TATA STEEL LIMITED, MERAMANDALI Date: 23.09.2024

Test report No - 08/2024-005

Source of Sample: SARAPA Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4                                 | 5                                                       | 15            | <5        |  |
|-----|------------------------------------|----------------------------------------|---------------------------------------------------------|---------------|-----------|--|
| 20. | *Odour                             | Part 5                                 | Agreeable                                               | Agreeable     | Agreeable |  |
| 21. | *Conductivity, µs/cm               | Part 14                                | -                                                       | -             | 790       |  |
| 22. | *Total Suspended Solid, mg/l       | Part 17                                | -                                                       | 1-            | 6.0       |  |
| 23. | *Nitrite as NO2,mg/L               | ite as NO <sub>2</sub> ,mg/L Part 34 - |                                                         | -             | 0.079     |  |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34                                | 45                                                      | No relaxation | 4.39      |  |
| 25. | Sodium, mg/l                       | Part 45                                | -                                                       | -             | 20.54     |  |
| 26. | Potassium, mg/l                    | Part 45                                | -                                                       |               | 1.63      |  |
| 27. | Residual Free Chlorine, mg/l       | Part 26                                | 0.2                                                     | 1.0           | <0.1      |  |
| 28. | Arsenic as As, mg/l                | Part 37                                | 0.01                                                    | No relaxation | <0.001    |  |
| 29. | Total Coliform by MPN              | 10 1011 1111 2010                      |                                                         | No relaxation | 542       |  |
| 30. | Fecal Coliform by MPN IS 1622 RA 2 |                                        | in 100ml sample Shall not be detectable in 100ml sample | No relaxation | < 2       |  |

**Authorized Signatory** 

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236, E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".



# (A Govt. of India Autonomous Body) Environmental Chemical Laboratory Bhubaneswar, Odisha TEST REPORT



| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date : 23.09.2024       |            |
|--------------------------------------------|-------------------------|------------|
| Test report No - 08/2024-006               |                         |            |
| Source of Sample: SIBAPUR                  | Sample receiving Date : | 09.08.2024 |
| Type of Sample: Well water                 | Sample Analysis Date :  | 09.08.2024 |

| SI<br>No | Characteristics                             | Test Method<br>(P)of IS:3025 | Requirements as p | Test Result       |           |
|----------|---------------------------------------------|------------------------------|-------------------|-------------------|-----------|
|          |                                             |                              | Acceptable limit  | Permissible Limit |           |
| 1.       | Turbidity, NTU                              | Part 10                      | 1                 | 5                 | 2.03      |
| 2.       | pH@Temp° C                                  | Part 11                      | 6.5-8.5           | No relaxation     | 7.42@25.0 |
| 3.       | Total Dissolved Solids mg/L                 | Part 16                      | 500               | 2000              | 240.0     |
| 4.       | Total Hardness (as CaCO <sub>3</sub> ),mg/L | Part 21                      | 200               | 600               | 154.0     |
| 5.       | Calcium as Ca, mg/L                         | Part 40                      | 75                | 200               | 52.10     |
| 6.       | Magnesium as Mg, mg/L                       | Part 46                      | 30                | 100               | 5.83      |
| 7.       | Alkalinity as CaCO <sub>3</sub> , mg/L      | Part 23                      | 200               | 600               | 126.0     |
| 8.       | Chloride as Cl, mg/L                        | Part 32                      | 250               | 1000              | 24.0      |
| 9.       | Sulfate as SO <sub>4</sub> , mg/L           | Part 24                      | 200               | 400               | 33.46     |
| 10.      | Fluoride as F, mg/L                         | Part 60                      | 1.0               | 1.5               | 0.64      |
| 11.      | Iron as Fe, mg/L                            | Part 53                      | 0.3               | No relaxation     | 0.113     |
| 12.      | Copper as Cu, mg/L                          | Part 42                      | 0.05              | 1.5               | 0.039     |
| 13.      | Manganese as Mn, mg/L                       | APHA(PART 3111B)             | 0.1               | 0.3               | 0.019     |
| 14.      | Zinc as Zn, mg/L                            | Part 49                      | 5.0               | 15.0              | 0.277     |
| 15.      | Lead as Pb, mg/L                            | Part 47                      | 0.01              | No relaxation     | < 0.001   |
| 16.      | Cadmium as Cd, mg/L                         | Part 41                      | 0.003             | No relaxation     | < 0.001   |
| 17.      | Chromium as Cr, mg/L                        | Part 52                      | 0.05              | No relaxation     | < 0.001   |
| 18.      | Nickel as Ni, mg/l                          | Part 54                      | 0.02              | No relaxation     | <0.001    |

**Authorized Signatory** 

Old Sie

#### Dr. Arakshita Majhi.

Senior Principal Scientist

Phone: 0674-2379236, E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- 2. This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- 3. This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.

Non NABL Test report - P.T.O



\*\*\*

(A Govt. of India Autonomous Body)
Environmental Chemical Laboratory
Bhubaneswar, Odisha
TEST REPORT

| Issued to: TATA STEEL LIMITED, MERAMANDALI | Date: 23.09.2024 |
|--------------------------------------------|------------------|
|--------------------------------------------|------------------|

Test report No - 08/2024-006

Source of Sample: SIBAPUR Sample receiving Date: 09.08.2024

Type of Sample: Well water Sample Analysis Date: 09.08.2024

| 19. | *Color, Hazen units                | Part 4                                      | 5                                       | 15            | <5        |  |
|-----|------------------------------------|---------------------------------------------|-----------------------------------------|---------------|-----------|--|
| 20. | *Odour                             | Part 5                                      | Agreeable                               | Agreeable     | Agreeable |  |
| 21. | *Conductivity, µs/cm               | Part 14                                     | -                                       | -             | 415       |  |
| 22. | *Total Suspended Solid, mg/l       | Part 17                                     | Part 17                                 |               | 8.0       |  |
| 23. | *Nitrite as NO2,mg/L               | *Nitrite as NO <sub>2</sub> ,mg/L Part 34 - |                                         |               | 0.148     |  |
| 24. | *Nitrate as NO <sub>3</sub> , mg/L | Part 34                                     | 45                                      | No relaxation | 25.30     |  |
| 25. | Sodium, mg/l                       | Part 45                                     | -                                       |               | 16.38     |  |
| 26. | Potassium, mg/l                    | Part 45                                     | <u> </u>                                | -             | 13.85     |  |
| 27. | Residual Free Chlorine, mg/l       | Part 26                                     | 0.2                                     | 1.0           | <0.1      |  |
| 28. | Arsenic as As, mg/l                | Part 37                                     | 0.01                                    | No relaxation | <0.001    |  |
| 29. | Total Coliform by MPN              | IS 1622 RA 2019                             | Shall not be detectable in 100ml sample | No relaxation | >542      |  |
| 30. | Fecal Coliform by MPN              | IS 1622 RA 2019                             | Shall not be detectable in 100ml sample | No relaxation | 32        |  |

Authorized Signatory

Dr. Arakshita Majhi

Senior Principal Scientist

Phone: 0674-2379236,

E mail - arakshita@immt.res.in

#### NOTES:

- 1. The sample is drawn by EC Laboratory & result relates to the sample tested.
- This certificate shall not be reproduced wholly or in part without prior written consent of the laboratory.
- This certificate shall not be used in any advertising media or as evidence in the court of Law without prior written consent of laboratory.
- 4. Latest version of test methods used as per latest specification.
- 5. It is recommended that the acceptable limit is to be implemented. Values in excess of those mentioned in "acceptable limit" render the water not suitable, but still may be tolerated in the absence of an alternative source but up to the limits indicate under "permissible limit" in the absence of alternative sources, above which the source will have to be rejected.
- 6. Testing parameters which are not set limitation has marked as "-".

## Visiontek Consultancy Services Pvt. Ltd.

(Committed For Better Environment)

ISO 9001:2015, ISO 14001:2015, ISO 45001:2018 (OH&S), ISO/IEC 17025:2017 Certified

Ref. no: Envlab/24-25/TR-12306 Date: 18.11.2024

#### **ASH ANALYSIS REPORT**

1. Name of the Indus : M/s TATA Steel Limited Meramandali, Dhenkanal

2. Sampling Location : S-1: Fly Ash collected from BFPP-1

: **S-2:** Bed Ash collected from BFPP-1 :S-3: Fly ash collected from AEL-165 :S-4: Bed ash collected from ASL-165

**3.** Date of Sampling : 11.11.2024

4. Date of Analysis : 12.11.2024 to 18.11.2024
5. Sample Collected by : VCSPL Representative

| 5. Sample Concetted by . Yest Exeptesentative |                 |      |                                                                                        |       |                  |       |       |  |  |
|-----------------------------------------------|-----------------|------|----------------------------------------------------------------------------------------|-------|------------------|-------|-------|--|--|
| Sl. No.                                       | Name of the     | Unit | Govt. of India, MoEF<br>& CC Schedule-II<br>based on leachable<br>concentration limits |       | Analysis Results |       |       |  |  |
|                                               | Parameters      |      | (TCLP) or Soluble<br>Threshold limit<br>Concentration<br>(STLC), Class A2016           | S-1   | S-2              | S-3   | S-4   |  |  |
| 01                                            | Arsenic as As   | mg/l | 5.0 mg/l                                                                               | 0.004 | 0.002            | 0.003 | 0.002 |  |  |
| 02                                            | Barium as Ba    | mg/l | 100.0<br>mg/l                                                                          | BDL   | BDL              | BDL   | BDL   |  |  |
| 03                                            | Cadmium as cd   | mg/l | 1.0 mg/l                                                                               | BDL   | BDL              | BDL   | BDL   |  |  |
| 04                                            | Chromium as Cr  | mg/l | 5.0 mg/l                                                                               | BDL   | BDL              | BDL   | BDL   |  |  |
| 05                                            | Lead as Pb      | mg/l | 5.0 mg/l                                                                               | BDL   | BDL              | BDL   | BDL   |  |  |
| 06                                            | Mercury as Hg   | mg/l | 0.2 mg/l                                                                               | BDL   | BDL              | BDL   | BDL   |  |  |
| 07                                            | Selenium as Se  | mg/l | 1.0 mg/l                                                                               | 0.003 | 0.003            | 0.003 | 0.003 |  |  |
| 08                                            | Iron as Fe      | mg/l |                                                                                        | 0.81  | 0.41             | 0.69  | 0.36  |  |  |
| 09                                            | Nickel as Ni    | mg/l | 20.0<br>mg/l                                                                           | 0.22  | 0.16             | 0.24  | 0.17  |  |  |
| 10                                            | Zinc as Zn      | mg/l | 250.0<br>mg/l                                                                          | 0.48  | 0.35             | 0.49  | 0.33  |  |  |
| 11                                            | Manganese as Mn | mg/l | 10.0<br>mg/l                                                                           | 0.41  | 0.28             | 0.50  | 0.32  |  |  |
| 12                                            | Cobalt as Co    | mg/l | 80.0<br>mg/l                                                                           | BDL   | BDL              | BDL   | BDL   |  |  |
| 13                                            | Copper as Cu    | mg/l | 25.0<br>mg/l                                                                           | 0.37  | 0.28             | 0.39  | 0.26  |  |  |
| 14                                            | Vanadium as V   | mg/l | 24.0<br>mg/l                                                                           | BDL   | BDL              | BDL   | BDL   |  |  |
| 15                                            | Aluminium as Al | mg/l |                                                                                        | 4.7   | 4.3              | 5.3   | 4.8   |  |  |
| 16                                            | Fluoride as F   | mg/l | 180.0<br>mg/l                                                                          | 1.79  | 1.31             | 1.89  | 1.36  |  |  |





### **CSR Expenditure and Activities**

#### (Around Tata Steel Ltd, Meramandali & TSM-CPP(AEL))

Period: From April'24 to October'24

| PROGRAM HEAD      | Expenditure in Lakh | MAJOR<br>INTERVENTIONS/REMARKS                                 |
|-------------------|---------------------|----------------------------------------------------------------|
| HEALTH            | 62.07               | Public Health Unit; Rishta; Project<br>Drishti                 |
| Agriculture       | 57.18               | Agricultural activity                                          |
| Environment       | 2.91                | Plantation                                                     |
| Skill Development | 6.89                | Disability program                                             |
| DRINKING WATER    | 61.72               | Installation of tubewells; supply of drinking water            |
| EDUCATION         | 307.98              | School infrastructure; Education project: Green school project |
| SPORTS            | 4.86                |                                                                |
| Miscellaneous     | 189.25              |                                                                |
| TOTAL             | 692.86              |                                                                |

## Environment Laboratory TATA Steel Meramandali, Odisha

Ref.No.EMD/LAB/2024/0002

|       |                                |                                         |            | May-<br>24   | June-<br>24 | July-<br>24  | August-  | September-24 |
|-------|--------------------------------|-----------------------------------------|------------|--------------|-------------|--------------|----------|--------------|
| S. N  | N Name of the unit Location    |                                         |            |              |             |              |          |              |
| O. I. | Traine or the diff.            |                                         |            |              | T           | Leq          |          | T            |
|       |                                | Near CSB-1   D Fan                      | 81.7       | SD           | 83          | 82.5         | SD       | 83.5         |
|       |                                | Near CSB-2 I D Fan                      | SD         | 85.1         | 84.1        | 85.1         | SD       | 84.9         |
|       |                                | Near BB plant site office               | 78.5       | 80.3         | 79.3        | 78.6         | 77.9     | 80.2         |
|       |                                | Near P.C.S building Near T.C.S building | 80<br>79.6 | 81.5<br>81.7 | 78.4<br>80  | 80.9<br>81.6 | SD<br>SD | 81.1<br>82.3 |
| 1     | RMPP                           | Near S.C.S building                     | 79.8       | 82           | 79.9        | 81.4         | SD       | 80.7         |
| _     | IXIVII I                       | Control Room Office                     | 58.7       | 56           | 58.4        | 58.1         | 60.7     | 58.5         |
|       |                                | Near Pumphouse Area                     | 80.4       | 80.5         | 83.4        | 81.2         | 80.6     | 81.1         |
|       |                                | Near O.P.S building                     | 81.8       | 81.4         | 82.6        | 81.5         | 80.1     | 80.6         |
|       |                                | Near O.S.C building                     | 82.5       | 82.4         | 82          | 81.7         | 79.6     | 80.4         |
|       |                                | Near O.T.C building                     | 83         | 82.6         | 81.5        | 82.3         | 83.5     | 83.6         |
|       |                                | Near Entrance Point                     | 84.1       | 82.1         | 83.8        | 84.2         | 84.5     | 83.5         |
|       | 110 MW Compressor<br>House AEL | Near Compressor                         | 90.2       | 92.3         | 90.7        | 91.5         | 92.3     | 92.8         |
| 2     | House ALL                      | Inside Operator office                  | 79.7       | 80.3         | 75.1        | 80           | 75.9     | 80.3         |
| 2     | 150 MW Ash                     | Near Entrance Point                     | 85.1       | 84.4         | 84.5        | 85.8         | 85.2     | 85.1         |
|       | Conveying Compressor           | Near Compressor                         | 91.7       | 90.4         | 91          | 92           | 90.3     | 93.6         |
|       | House AEL                      | Inside Operator office                  | 81.4       | 80.6         | 76.3        | 79.9         | 76.5     | 81.4         |
|       | 165 MW Compressor<br>House AEL | Near Entrance Point                     | 81.7       | 82.5         | 79.3        | 81.5         | 85.1     | 80.5         |
| 3     |                                | Near Compressor                         | 92         | 90.3         | 92          | 91.7         | 91.9     | 92.8         |
|       |                                | Inside Operator office                  | 78.6       | 77.5         | 69.2        | 80.2         | 80.1     | 80.4         |
|       |                                | CFBC Boiler-1                           |            |              |             |              |          |              |
|       |                                | Near ID Fan-1                           | SD         | SD           | SD          | SD           | SD       | SD           |
|       |                                | Near ID Fan-2                           | SD         | SD           | SD          | SD           | SD       | SD           |
|       |                                | Near S A Fan                            | SD         | SD           | SD          | SD           | SD       | SD           |
|       |                                | Near P.A. Fan                           | SD         | SD           | SD          | SD           | SD       | SD           |
|       |                                | Near Boiler -1 Area                     | SD         | SD           | SD          | SD           | SD       | SD           |
|       |                                | CFBC- Boiler-2                          |            | •            | ·           |              |          | T            |
|       |                                | Near ID Fan-1                           | SD         | 85.4         | 85.9        | SD           | SD       | 85.9         |
|       |                                | Near ID Fan-2                           | SD         | 85.8         | 86          | SD           | SD       | 85.7         |
|       |                                | Near S A Fan                            | SD         | 91           | 95.5        | SD           | SD       | 91.3         |
| 4     | 300 MW Power                   | Near P.A. Fan                           | SD         | 91.1         | 96          | SD           | SD       | 91.5         |
| 4     | Plant AEL                      | Near Boiler -2 Area                     | SD         | 84.5         | 84.9        | SD           | SD       | 85.8         |
|       |                                | CFBC- Boiler-3                          |            | 00           | 00          |              |          | 33.3         |
|       |                                | Near ID Fan-1                           | 85.8       | 84.9         | 86.8        | 85.1         | SD       | 85.2         |
|       |                                | Near ID Fan-2                           | 86.1       | 85.1         | 86.2        | 85.4         | SD       | 85.9         |
|       |                                | Near S A Fan                            | 90.7       | 90.4         | 94.5        | 94.1         | SD       | 91.8         |
|       |                                | Near P.A. Fan                           | 90.9       | 91.6         | 94.3        | 94.7         | SD       | 91.2         |
|       |                                | Near Boiler -3 Area  CFBC- Boiler-4     | 85.6       | 85.1         | 84.8        | 84.1         | SD       | 85           |
|       |                                | Near ID Fan-1                           | 85.4       | SD           | 84.1        | 84.4         | SD       | 85.1         |
|       |                                | Near ID Fan-2                           | 86         | SD           | 83.6        | 84           | SD       | 85.4         |
|       |                                | Near S A Fan                            | 90.5       | SD           | 94.3        | 93.7         | SD       | 92           |
|       |                                | Near P.A. Fan                           | 91         | SD           | 93.7        | 94.2         | SD       | 91.3         |
|       |                                | Near Boiler -4                          | 85.2       | SD           | 83.9        | 84.6         | SD       | 85.8         |

## Environment Laboratory TATA Steel Meramandali, Odisha

|      |                  |                     | April-24 | May-<br>24 | June-<br>24 | July-<br>24 | August-<br>24 | September-<br>24 |
|------|------------------|---------------------|----------|------------|-------------|-------------|---------------|------------------|
| S. N | Name of the unit | Location            |          |            |             |             |               |                  |
|      |                  |                     |          |            | 1           | Leq         |               |                  |
|      |                  | CFBC- Boiler-5      |          |            |             |             |               |                  |
|      |                  | Near ID Fan-1       | 78.2     | 80         | 83.1        | 80.4        | 80.3          | SD               |
|      |                  | Near ID Fan-2       | 79.3     | 80.3       | 82.6        | 80.5        | 80.5          | SD               |
|      |                  | Near S A Fan        | 92.1     | 91.7       | 87.1        | 91.5        | 91.7          | SD               |
|      |                  | Near P.A. Fan       | 91.3     | 91.5       | 88.8        | 91.1        | 91.5          | SD               |
|      |                  | Near Boiler -5      | 85.4     | 85.8       | 84.7        | 85.1        | 85.1          | SD               |
|      |                  | CFBC- Boiler-6      |          |            |             |             |               |                  |
| 5    | 185 MW Power     | Near ID Fan-1       | 80       | 80.8       | SD          | 80.1        | 81.6          | SD               |
| 5    | Plant AEL        | Near ID Fan-2       | 80.2     | 81.6       | SD          | 80.4        | 80.7          | SD               |
|      |                  | Near S A Fan        | 91.5     | 91         | SD          | 90.5        | 91.6          | SD               |
|      |                  | Near P.A. Fan       | 90.8     | 91.6       | SD          | 91.4        | 91.4          | SD               |
|      |                  | Near Boiler -6      | 86       | 85.4       | SD          | 85.3        | 83.9          | SD               |
|      |                  | Near Silo Area      | 84.8     | 84.3       | 84.5        | 83.5        | 83.7          | 82.5             |
|      |                  | Near 150 MW TG      | 91.1     | 90.4       | 89.8        | 90.1        | 90            | 90.1             |
|      |                  | Near 165 MW TG      | 91.5     | 90.2       | 90.6        | 90          | 89.6          | 90.5             |
|      |                  | Control Room Office | 59.3     | 61.5       | 61.8        | 61.8        | 59.3          | 60.8             |

## SUMMARY OF AMBIENT AIR QUALITY MONTHLY AVERAGE VALUES

|         | Locations of            | Monthly Average  |                              |                 |       |      |  |  |
|---------|-------------------------|------------------|------------------------------|-----------------|-------|------|--|--|
| Month   | Locations of Monitoring |                  | Unit in<br>mg/m <sup>3</sup> |                 |       |      |  |  |
| Worth   | Pollutant               | PM <sub>10</sub> | PM <sub>2.5</sub>            | SO <sub>2</sub> | NOx   | СО   |  |  |
|         | Standard                | 100              | 60                           | 80              | 80    | 2    |  |  |
|         | CAAQMS-1                | 102.28           | 62.32                        | 10.93           | 18.19 | 0.65 |  |  |
|         | CAAQMS-2                | 175.93           | 65.91                        | 21.66           | 11.29 | 0.73 |  |  |
|         | CAAQMS-3                | 190.14           | 57.82                        | 6.32            | 17.72 | 0.74 |  |  |
| Apr'24  | CAAQMS-4                | 188.94           | 92.00                        | 6.74            | 15.49 | 0.25 |  |  |
|         | CAAQMS-5                | 242.45           | 103.72                       | 14.83           | 10.14 | 0.26 |  |  |
|         | CAAQMS-6                | 187.03           | 42.24                        | 9.46            | 21.26 | 0.60 |  |  |
|         | CAAQMS-7                | 171.23           | 56.78                        | 47.08           | 22.41 | 0.75 |  |  |
|         | CAAQMS-1                | 96.68            | 42.29                        | 10.96           | 18.44 | 0.65 |  |  |
|         | CAAQMS-2                | 197.94           | 49.97                        | 21.52           | 10.88 | 0.73 |  |  |
|         | CAAQMS-3                | 188.34           | 46.43                        | 2.46            | 17.04 | 0.73 |  |  |
| May'24  | CAAQMS-4                | 180.35           | 64.39                        | 5.92            | 8.59  | 0.25 |  |  |
|         | CAAQMS-5                | 212.01           | 79.43                        | 12.89           | 8.09  | 0.96 |  |  |
|         | CAAQMS-6                | 119.63           | 54.33                        | 8.74            | 26.53 | 1.00 |  |  |
|         | CAAQMS-7                | 88.12            | 30.45                        | 42.26           | 15.57 | 0.74 |  |  |
|         | CAAQMS-1                | 69.79            | 33.19                        | 10.94           | 18.23 | 0.65 |  |  |
|         | CAAQMS-2                | 133.17           | 44.09                        | 22.35           | 10.14 | 0.73 |  |  |
|         | CAAQMS-3                | 140.52           | 38.25                        | 2.47            | 17.10 | 0.74 |  |  |
| June'24 | CAAQMS-4                | 129.88           | 46.72                        | 5.63            | 7.52  | 0.25 |  |  |
|         | CAAQMS-5                | 172.83           | 66.47                        | 14.20           | 8.11  | 0.29 |  |  |
|         | CAAQMS-6                | 111.10           | 43.96                        | 9.98            | 25.51 | 0.61 |  |  |
|         | CAAQMS-7                | 81.98            | 31.77                        | 42.92           | 14.76 | 0.74 |  |  |
|         | CAAQMS-1                | 60.65            | 23.87                        | 11.18           | 18.23 | 0.65 |  |  |
|         | CAAQMS-2                | 69.64            | 26.84                        | 23.40           | 10.92 | 0.73 |  |  |
|         | CAAQMS-3                | 130.47           | 40.19                        | 2.88            | 18.68 | 0.73 |  |  |
| July'24 | CAAQMS-4                | 64.11            | 26.06                        | 6.57            | 7.56  | 0.25 |  |  |
|         | CAAQMS-5                | 70.88            | 23.19                        | 12.56           | 7.37  | 0.26 |  |  |
|         | CAAQMS-6                | 93.72            | 32.33                        | 14.15           | 22.00 | 1.00 |  |  |
|         | CAAQMS-7                | 79.19            | 31.86                        | 42.77           | 15.56 | 0.74 |  |  |

|         | CAAQMS-1 | 39.77  | 13.36 | 10.94 | 18.17 | 0.66 |
|---------|----------|--------|-------|-------|-------|------|
|         | CAAQMS-2 | 70.70  | 26.51 | 22.80 | 10.40 | 0.73 |
|         | CAAQMS-3 | 116.34 | 44.98 | 2.42  | 18.57 | 0.73 |
| Aug'24  | CAAQMS-4 | 41.51  | 14.87 | 5.50  | 7.25  | 0.25 |
|         | CAAQMS-5 | 64.21  | 22.33 | 17.89 | 8.22  | 0.96 |
|         | CAAQMS-6 | 103.24 | 34.32 | 17.38 | 22.77 | 1.00 |
|         | CAAQMS-7 | 81.22  | 32.12 | 44.71 | 16.96 | 0.74 |
| Sept'24 | CAAQMS-1 | 53.36  | 14.71 | 12.02 | 19.18 | 0.65 |
|         | CAAQMS-2 | 117.33 | 33.27 | 22.93 | 12.45 | 0.73 |
|         | CAAQMS-3 | 109.91 | 35.40 | 2.13  | 18.83 | 0.74 |
|         | CAAQMS-4 | 41.72  | 16.18 | 5.62  | 7.97  | 0.24 |
|         | CAAQMS-5 | 69.92  | 23.59 | 16.41 | 14.66 | 0.26 |
|         | CAAQMS-6 | 85.08  | 35.78 | 15.30 | 21.52 | 1.00 |
|         | CAAQMS-7 | 82.82  | 36.70 | 46.91 | 15.00 | 0.74 |

All values are in µg/m³ except CO values are in mg/m³. All Values are derived from 24 hourly average data except CO values which are derived from 8 hourly average data.

CAAQMS 1: Near Township; CAAQMS 2: Near Utility Department; CAAQMS 3: Near CRM; CAAQMS 4: Near Water Complex; CAAQMS 5: Near Coke Oven 2; CAAQMS 6: Near Wagon Tippler; CAAQMS 7: Near Material Gate, UM: Under Maintenance.



(Formerly Bhushan Energy Limited)

AEL/SPCB/AE-06/2024-02/140

May 29, 2024

The Member Secretary

Central Pollution Control Board, Parivesh Bhawan, East Arjun Nagar, Delhi - 110032

Subject: Submission of annual implementation report for the financial year 2023-24.

Reference: I. CPCB letter No.IPC-II/TPP/CP-II/76/2022/1252 dtd. 06.03.2023.

II. Fly Ash Notification dated 14<sup>th</sup> September 1999 and its amendment.

Dear Sir,

This has reference to the captioned subject and letter cited above. We are submitting herewiththe annual implementation report of Angul Energy Limited at Ganthigadia, Angul, Odisha for the year 2023-24 (From 01.04.2023 to 31.03.2024) in the prescribed format.

This is for your kind information and necessary action

Thanking you

Yours faithfully,

For Angul Energy Limited

Rajesh Agarwal

Managing Director, AEL

Encl: As above

Copy to: I. The Member Secretary, State Pollution Control Board, Parivesh Bhawan A/118, Nilakhanta Nagar, Unit -VIII, Bhubaneswar, Odisha,

II. The Dy. Director General of Forests, (Central) Govt. of India, MoEF&CCIntegrated Regional Office, A/3 Chandrasekharpur, Bhubaneswar.

III. Chief Engineer (TCD) Central Electricity Authority (CEA), New Delhi.

S.P.C. BOARD

BHUBANESWAR-12

IV. Regional Officer, Odisha State Pollution Control Board, Angul, Odisha

Ganthigadia, P.O. Nuahata, Via Banarpal, Dist. Angul 759 128

Registered Office: Ground Floor, Mira Corporate Suites, Plot No. 1 & 2, Ishwar Nagar, Mathura Road, New Delhi 110 065
Tel: +91 11 3919 4000, Fax: 91 11 4101 0050, E-mail: ael@anugulenergy.co.in, Website: www.angulenergy.co.in, CIN No: U40105DL2005PLC140748

## Ash Compliance/Implementation Report (For the period 1<sup>st</sup> April-31<sup>st</sup> March) to be submitted on or before 31<sup>st</sup> May.

| SI.No. | . Details                                                                                                                             |                                                                                               |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1.     | Name of Power Plant                                                                                                                   | Angul Energy Limited                                                                          |  |  |  |  |  |
| 2.     | Name of the company                                                                                                                   | Angul Energy Limited                                                                          |  |  |  |  |  |
| 3.     | District                                                                                                                              | Angul                                                                                         |  |  |  |  |  |
| 4.     | State                                                                                                                                 | Odisha                                                                                        |  |  |  |  |  |
| 5.     | Postal address for communication:                                                                                                     | At - Ganthigadia, PO - Nuahata, Via<br>- Banarpal, Dist – Angul 759128                        |  |  |  |  |  |
| 6.     | E-mail:                                                                                                                               | ael@angulenergy.co.in/<br>santosh.pattajoshi@tatasteel.com/<br>anoop.srivastava@tatasteel.com |  |  |  |  |  |
| 7.     | Power Plant installed capacity (MW):                                                                                                  | 465 MW                                                                                        |  |  |  |  |  |
| 8.     | Plant Load Factor (PLF):                                                                                                              | 47.99%                                                                                        |  |  |  |  |  |
| 9.     | No. of units generated (MWh):                                                                                                         | 1960040                                                                                       |  |  |  |  |  |
| 10.    | Total area under power plant (ha):<br>(Including area under ash ponds)                                                                | 40.48 Ha                                                                                      |  |  |  |  |  |
| 11.    | Quantity of coal consumption during reporting period (Metric Tons per Annum):                                                         | 1690055                                                                                       |  |  |  |  |  |
| 12.    | Average ash content in percentage (per cent):                                                                                         | 45.76% (wet basis)                                                                            |  |  |  |  |  |
| 13.    | Quantity of current ash generation during reporting period (Metric Tons per Annum):                                                   | 773450                                                                                        |  |  |  |  |  |
|        | Fly ash (Metric Tons per Annum):                                                                                                      | 672865                                                                                        |  |  |  |  |  |
|        | Bottom ash (Metric Tons per Annum):                                                                                                   | 100585                                                                                        |  |  |  |  |  |
| 14.    | Capacity of dry fly ash storage silo(s) (Metric Tons)                                                                                 | 8500                                                                                          |  |  |  |  |  |
| 15.    | Details of utilisation of current ash generated during reporting period                                                               |                                                                                               |  |  |  |  |  |
|        | (a) Total quantity of current ash utilised (MTPA) during reporting period:                                                            | 673320                                                                                        |  |  |  |  |  |
|        | (b) Quantity of fly ash utilised (MTPA):                                                                                              |                                                                                               |  |  |  |  |  |
| ·      | <ul><li>(i) Fly ash-based products (bricks or<br/>blocks or tiles or fibre cement sheets<br/>or pipes or boards or panels):</li></ul> | 88395                                                                                         |  |  |  |  |  |
|        | (ii) Cement manufacturing:                                                                                                            | 191913                                                                                        |  |  |  |  |  |
|        | (iii) Ready mix concrete:                                                                                                             | Nil                                                                                           |  |  |  |  |  |

| (iv) Ash and Geo-polymer-based construction material:                                                       | Nil Fia |
|-------------------------------------------------------------------------------------------------------------|---------|
| (v) Manufacturing of sintered or cold bonded ash aggregate:                                                 | Nil     |
| (vi) Construction of roads, road and fly<br>over embankment:                                                | 308843  |
| (vii) Construction of dams:                                                                                 | Nil     |
| (viii) Filling up of low-lying area/stone quarry:                                                           | 10755   |
| (ix) Filling of mine voids/ abandoned stone quarry:                                                         | 33444   |
| (x) Use in overburden dumps:                                                                                | Nil     |
| (xi) Agriculture:                                                                                           | Nil     |
| (xii) Construction of shoreline protection structures in coastal districts:                                 | Nil     |
| (xiii) Export of ash to other countries:                                                                    | Nil     |
| (xiv) Others (please specify):                                                                              | 79970   |
| (c) Quantity of bottom ash utilised (MTPA):                                                                 | 100244  |
| (i) Fly ash based products (bricks or blocks or tiles or fibre cement sheets or pipes or boards or panels): | 51846   |
| (ii) Cement manufacturing:                                                                                  | Nil     |
| (iii) Ready mix concrete:                                                                                   | Nil     |
| (iv) Ash and Geo-polymer based construction material:                                                       | Nil     |
| <ul><li>(v) Manufacturing of sintered or cold<br/>bonded ash aggregate:</li></ul>                           | Nil     |
| (vi) Construction of roads, road and flyover embankment:                                                    | 39844   |
| (vi) Construction of dams:                                                                                  | Nil     |
| (vii) Filling up of low lying area:                                                                         | 90      |
| (vii) Filling of mine voids/ abandoned stone quarry:                                                        | 8464    |
| (viii) Use in overburden dumps:                                                                             | Nil     |
| (ix) Agriculture:                                                                                           | Nil     |
| (x) Construction of shoreline protection structures in coastal districts:                                   | Nil     |
| (xi) Export of ash to other countries:                                                                      | Nil     |
| (xii) Others (please specify):                                                                              | Nil     |
| Total quantity of current ash unutilised (MTPA) during reporting period:                                    | 341     |

| 16. | Percentage utilisation of current ash generated during reporting period (percent):                                                            | 100%                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 17. | Details of disposal of ash in ash ponds                                                                                                       | Nil                                                                                  |
|     | (a) Total quantity of ash disposed in ash pond (s) (Metric Tons) as on 31st March (excluding reporting period):                               | NA                                                                                   |
|     | (b) Quantity of ash disposed in ash pond(s) during reporting period (Metric Tons):                                                            | NA                                                                                   |
|     | (c) Total quantity of water consumption for slurry discharge into ash ponds during reporting period (m3):                                     | NA                                                                                   |
|     | (d) Total number of ash ponds:                                                                                                                | NA                                                                                   |
|     | (i) Active:                                                                                                                                   | NA                                                                                   |
|     | (ii) Exhausted (yet to be reclaimed):                                                                                                         | NA                                                                                   |
|     | (iii) Reclaimed:                                                                                                                              | NA                                                                                   |
|     | (e) total area under ash ponds (ha):                                                                                                          | NA                                                                                   |
| 18. | Individual ash pond details Ash pond-1,2, etc (please provide below mentioned details separately, if number of ash ponds is more than one)    | Interim ash pond (4.8 Acre) has been constructed to manage ash in case of emergency. |
|     | (a) Status: Under construction or Active or Exhausted or Reclaimed:                                                                           | NA .                                                                                 |
|     | (b) Date of start of ash disposal in ash pond (DD/MM/YYYY or MMYYYY):                                                                         | NA                                                                                   |
|     | (c) Date of stoppage of ash disposal in ash pond after completing its capacity (DD/MM/YYYY or MM/YYYY): (Not applicable for active ash ponds) | N                                                                                    |
|     | (c) area (hectares):                                                                                                                          | NA                                                                                   |
|     | (d) dyke height (m):<br>(d) volume (m3):                                                                                                      | NA                                                                                   |
|     | (e) quantity of ash disposed as on 31st March (Metric Tons):                                                                                  | NA                                                                                   |
|     | (f) available volume in percentage (per cent) and quantity of ash can be further disposed (Metric Tons):                                      | NA                                                                                   |

| 999 444 5 11 14 14 14 14 14 14 14 14 14 14 14 14 | (g) expected life of ash pond (number of years and months):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA F4          |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
|                                                  | (e) co-ordinates (Lat and Long):<br>(Please specify minimum 4 co-ordinates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA             |
|                                                  | (f) type of lining carried in ash pond: HDPE lining or LDPE lining or clay lining or No lining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA             |
|                                                  | (g) mode of disposal: Dry disposal or wet slurry (in case of wet slurry please specify whether HCSD or MCSD or LCSD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA             |
|                                                  | (h) Ratio of ash: water in slurry mix (1:):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA             |
|                                                  | (i) Ash water recycling system (AWRS) installed and functioning: Yes or No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA             |
|                                                  | (j) Quantity of wastewater from ash pond discharged into land or water body (m3):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA             |
|                                                  | (k) Last date when the dyke stability study was conducted and name of the organisation who conducted the study:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA             |
|                                                  | (I) Last date when the audit was conducted and name of the organisation who conducted the audit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA             |
| 19.                                              | <ul> <li>Quantity of legacy ash utilised (MTPA):</li> <li>i. Fly ash-based products (bricks or blocks or tiles or fibre cement sheets or pipes or boards or panels):</li> <li>ii. Cement manufacturing:</li> <li>iii. Ready mix concrete:</li> <li>iv. Ash and Geo-polymer-based construction material:</li> <li>v. Manufacturing of sintered or cold bonded ash aggregate:</li> <li>vi. Construction of roads, road and flyover embankment:</li> <li>vii. Construction of dams:</li> <li>viii. Filling up of low lying area:</li> <li>ix. Filling of mine voids:</li> <li>x. Use in overburden dumps:</li> <li>xi. Agriculture:</li> <li>xii. Construction of shoreline protection structures in coastal districts;</li> <li>xiii. Export of ash to other countries:</li> </ul> | vi. 455 Tonnes |

| 20. | Summary:                                                                                    |                                 |                                        |         |                            |  |  |  |  |
|-----|---------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|---------|----------------------------|--|--|--|--|
|     | Details                                                                                     | Quantity<br>generated<br>(MTPA) | Quantity utilised (MTPA) and (percent) |         | Balance<br>quantity (MTPA) |  |  |  |  |
|     | Current ash during reporting period                                                         | 773450                          | 773109 and                             | d 99.9% | 341                        |  |  |  |  |
|     | Legacy ash                                                                                  | 455                             | 455 and                                | 100%    |                            |  |  |  |  |
|     | Total                                                                                       | 773905                          | 7735                                   | 64      | 341                        |  |  |  |  |
| 21. | Any other information: annual compliance repo power plant and ash por to:- moefcccoalash@go |                                 |                                        |         |                            |  |  |  |  |
| 22. | Signature of Authorised                                                                     | Spare                           |                                        |         |                            |  |  |  |  |

### **SUMMARY OF GASEOUS EMISSION**

Period: From April 2024 to September 2024

| AEL, CEMS- 1 (Boiler 1 & 2) |             |              | AEL, CEMS- 2 (Boiler 3 & 4) |             |              | AEL, CEMS- 3 (Boiler 5 & 6) |             |              |              |
|-----------------------------|-------------|--------------|-----------------------------|-------------|--------------|-----------------------------|-------------|--------------|--------------|
| Month                       | PM in mg/m³ | SO2 in mg/m³ | NOx in mg/m³                | PM in mg/m³ | SO2 in mg/m³ | NOx in mg/m <sup>3</sup>    | PM in mg/m³ | SO2 in mg/m³ | NOx in mg/m³ |
| April, 24                   | 17.94       | 798.69       | 83.67                       | 34.92       | 1063.59      | 101.87                      | 32.12       | 1044.33      | 177.59       |
| May, 24                     | 19.05       | 954.93       | 97.89                       | 28.42       | 1207.15      | 99.51                       | 27.84       | 688.80       | 125.97       |
| June, 24                    | 24.76       | 888.30       | 85.23                       | 33.73       | 996.17       | 87.6                        | 27.49       | 791.50       | 113.09       |
| July, 24                    | SD          |              |                             | 30.14       | 942.68       | 131.57                      | 619.61      | 85.64        | 83.20        |
| August, 24                  | 17.03       | 827.31       | 82.29                       | 30.52       | 549.13       | 76.13                       | 28.04       | 1072.43      | 159.13       |
| September, 24               | 22.28       | 910.23       | 94.56                       | 28.21       | 1204.14      | 97.59                       | 22.84       | 606.74       | 119.13       |