TSL/SPCB/TS-03/2024-15/489 September 09, 2024 The Member Secretary State Pollution Control Board, Odisha Parivesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751 012 Subject: Submission of Environment Statement report for Financial Year 2023-2024. Reference: Board's Consent Order no. 4463/IND-I-CON-5440, dated 23.03.2023. Dear Sir, This has reference to the captioned subject and letter cited above. Please find enclosed herewith dully filled "Environment Statement report (Form-V)" for the Financial Year 2023-2024 in prescribed format for 5.6 MTPA crude steel production at M/s. Tata Steel Limited, Meramandali, Dhenkanal, Odisha. This is in line compliance to the statutory requirement. Thanking you Yours faithfully, For Tata Steel Limited Ånoop Srivastava **Chief Environment - TSM** Encl: As above Copy to: 1. The Regional Officer, State Pollution Control Board, Odisha, Angul. 2. Deputy Director General, MoEF&CC, Integrated Regional Office(EZ), A/3, Chandrasekharpur, Bhubaneswar -751023. J. R. S. # [FORM-V] (See rule 14 of The Environment Protection Act, 1986) Environment Statement for the financial year ending 31st March 2024 ### PART – A | | General Inforn | nation | |----|--|--| | | Name of the Company | Tata Steel Limited, Meramandali | | 1. | Name & Address of the owner/occupier of the industry, operation or process | Sri Thachat Viswanath Narendran,
CEO& MD
Tata Steel Limited, Meramandali
At: Narendrapur, PO: Kusupanga
Via: Meramandali, Dist.: Dhenkanal,
Pin: 759121, Odisha | | 2. | Industry Category | Red-A | | | Primary (STC Code), | Large Metallurgical Industry | | | Secondary (STC Code) | Integrated Iron & Steel Industry | | 3. | Production capacity-Units | Production Capacity: 5.6 MTPA Crude Steel. Production During 2023-24: 5.16 Million Tons Crude Steel. (Major units are: RMHS & RMPP, Blast Furnaces, Coke Ovens, Sinter Plants, SMS, BOF, HSM, CRM, Captive Power Plant, Industrial By-Product Management Division and Utilities including Air Sepretaion Units.) | | 4. | Year of establishment | 2006 | | 5. | Date of last environment statement submitted | 25 th September, 2023 vide letter
no.TSL/SPCB/BS-03/2023-18/373 | ### PART – B | Water & Raw material Consumption | | | | | | | | | |---|--|---|--|--|--|--|--|--| | 1: Total Water Consumption (m³/d) | | | | | | | | | | Water Consumption | During the previous
Financial Year
(2022-23) | During the current
Financial Year
(2023-24) | | | | | | | | Industrial Consumption (Inside Works as Makeup water) | 52,283 | 51,029 | | | | | | | | Domestic Consumption (Inside Works as Drinking water) | 4,243 | 3,773 | | | | | | | | 2: Water Consumption per unit of the p | roduct (m³/tcs) | | | | | | | | | Name of the Products : Crude Steel | Process fresh water consumption per unit of product m ³ /tcs) | | | | | | | | | | 2022-23 | 2023-24 | | | | | | | | Specific fresh Water Consumption | 3.55 | 3.36 | | | | | | | | 3: Raw Material Consumptio | n (Works): | | | | | | |----------------------------|------------------------------|--|---|--|--|--| | | Name of | Consumption of raw material per unit of product (MT/tcs) | | | | | | Name of Raw materials | Name of
Products | During the previous Financial Year (2022-23) | During the current
Financial Year
(2023-24) | | | | | Iron (Lump &Fine) | | 1.31 | 1.26 | | | | | Purchase Pellet | | 0.37 | 0.33 | | | | | Limestone & Dolomite | | 0.36 | 0.37 | | | | | Quartz | | 0.02 | 0.03 | | | | | Coking Coal | | 0.54 | 0.67 | | | | | Non-Coking coal | | 0.48 | 0.35 | | | | | Scrap | Crude Steel
(Slab/Billet) | 0.06 | 0.07 | | | | | Ferro-Chromium | (Slab/billet) | 0.0001 | 0.0003 | | | | | Ferro-Manganese | | 0.0022 | 0.0029 | | | | | Ferro-Silicon | | 0.0002 | 0.0002 | | | | | Silico-Manganese | | 0.0006 | 0.0011 | | | | | Znic | | 0.001 | 0.0007 | | | | | Znic Alloy (Premix) | | 0.0007 | 0.0008 | | | | ### PART – C ### Pollution discharged to Environment per unit of Output (Parameters as specified in the Consent issued) ### (i) Works: | Pollutants Pollutants Quantity of pollutants discharged to Lingra Nallah (mass/day) | | Concenti
pollutants d
Lingra
(mass/v | % of variation from prescribed standards | | | |--|----------|---|--|-----------------------------|-------------| | | (Tons | s/day) | (m | In % age
(referring CTO) | | | (a) Water | 2022-23 | 2023-24 | 2022-23 2023-24 | | 2023-24 | | TSS | 0.189 | 0.188 | 63.13 | 90.17 | (-) 9.83 % | | COD | 0.132 | 0.080 | 43.99 | 38.26 | (-) 84.70 % | | Ammonia as N | 0.007 | 0.046 | 2.48 | 2.24 | (-) 95.52 % | | BOD | 0.009 | 0.089 | 3.11 | 4.28 | (-) 85.73 % | | Phenols | < 0.0015 | < 0.0015 | BDL
(< 0.5) | BDL
(< 0.5) | (-) 50 % | | Total Cyanide (as CN ⁻) | < 0.0003 | < 0.0003 | BDL
(< 0.1) | BDL
(< 0.1) | (-) 50% | ^{*}Detection Limit for Phenols and Cyanide is 0.5 and 0.1 respectively. | Pollutants | Quantity of discharged | | Concenti
pollutants (n | % of variation from prescribed standards | | |------------|------------------------|---------|---------------------------|--|----------| | (b) Air | 2022-23 | 2023-24 | 2022-23 | 2023-24 | 2023-24 | | | Tons | s/day | mg/ | In %
(referring CTO) | | | PM | 6.87 | 6.59 | 17.59 | 14.33 | (-) 71 % | | SO2 | 50.87 | 50.52 | 381 | 418.93 | (-) 30 % | | NOx | 21.03 | 24 | 142 | (-) 68 % | | ### 1. Surface Water Quality | Davamatar | l lm!4 | Kisinda | a Nalla | Lingra | a Nalla | |-----------------------------------|--------|--------------------|--------------------|--------------------|--------------------| | Parameter | Unit | U/S | D/S | U/S | D/S | | pH Value | - | 6.88-7.8 | 6.62-7.60 | 6.72-8.05 | 6.69-7.79 | | Colour | Hazen | BDL(DL:1.0) | BDL(DL:1.0) | BDL(DL:1.0) | BDL(DL:1.0) | | Temperature | °C | 25-28 | 25-30 | 25-29 | 25-28 | | Total Suspended Solids | mg/l | 4-25.40 | 3.10-30.10 | 2.80-16 | 4.20-36 | | Ammonia (as total ammonia- N) | mg/l | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | | Arsenic as As | mg/l | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | | BOD, 3days at 27°C | mg/l | BDL(DL:2.0) | BDL(DL:2.0) | BDL(DL:2.0) | BDL(DL:2.0) | | Boron as B | mg/l | BDL(DL:0.25) | BDL(DL:0.25) | BDL(DL:0.25) | BDL(DL:0.25) | | Cadmium as Cd | mg/l | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | | Calcium as Ca | mg/l | 11.76-88 | 23.52-76 | 15.68-47.52 | 20-47.52 | | Chlorides as Cl | mg/l | 19.59-88.17 | 19.59-74.23 | 14.70-64.33 | 14.70-58.78 | | COD | mg/l | 7.70-26.90 | 7.70-19.20 | 7.68-16 | 7.70-23.04 | | Copper (as Cu) | mg/l | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | | Cyanide as CN | mg/l | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | | Fluoride as F- | mg/l | 0.89-10.1 | 0.25-4.91 | 0.22-0.97 | 0.27-1.61 | | Free Ammonia | mg/l | BDL(DL:0.1) | BDL(DL:0.1) | BDL(DL:0.1) | BDL(DL:0.1) | | Hexa Chromium as Cr ⁺⁶ | mg/l | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | | Iron as Fe | mg/l | 0.18-3.10 | 0.08-1.80 | 0.07-10.75 | 0.22-1.32 | | Lead (as Pb) | mg/l | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | | Manganese (as Mn) | mg/l | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | | Mercury (as Hg) | mg/l | BDL
(DL:0.0002) | BDL
(DL:0.0002) | BDL
(DL:0.0002) | BDL
(DL:0.0002) | | Nickel (as Ni) | mg/l | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | | Nitrate as N | mg/l | 0.58-2.87 | 0.45-2.01 | 0.69-2.32 | 0.56-1.86 | | O&G | mg/l | BDL(DL:1.4) | BDL(DL:1.4) | BDL(DL:1.4) | BDL(DL:1.4) | | Phenolic Comp | mg/l | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | BDL(DL:0.001) | | Phosphate as P | mg/l | 0.08-0.31 | 0.08-0.28 | 0.14-0.60 | 0.08-0.24 | | RFC | mg/l | 0.1-5.37 | 0.1-8.98 | 0.1-2.68 | 0.1-13.96 | | Selenium (as Se) | mg/l | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | BDL(DL:0.005) | | Sulphate mg/l | mg/l | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | | TKN | mg/l | BDL(DL:0.3) | BDL(DL:0.3) | BDL(DL:0.3) | BDL(DL:0.3) | | Total Chromium (as Cr) | mg/l | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | BDL(DL:0.01) | |------------------------|------|--------------|--------------|--------------|--------------| | Total Nitrogen Content | mg/l | 0.95-3.01 | 0.74-2.84 | 0.98-2.60 | 0.8-2.20 | | Vanadium (as V) | mg/l | BDL(DL:0.05) | BDL(DL:0.05) | BDL(DL:0.05) | BDL(DL:0.05) | | Zinc (as Zn) | mg/l | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | BDL(DL:0.02) | NB: U/S: Upstream; D/S: Downstream; BDL: Belo w Detection Limit; DL: Detection Limit 2. ETP Treated Water Quality | Parameter | UOM | BOD-1T | reated e | ffluent | BOD-2 Treated effluent | | | |--|------|------------------|-----------------|-----------------|------------------------|-----------------|-----------------| | Parameter | OOW | Min | Max | Avg | Min | Max | Avg | | рН | ı | 6.80 | 7.60 | 7.19 | 6.94 | 7.66 | 7.30 | | Total Suspended Solid | mg/l | BDL
(DL:2.5) | 77 | 26.24 | 4.70 | 104 | 54.35 | | Oil & Grease | mg/l | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | | Chemical Oxygen Demand (COD) | mg/l | 28 | 84 | 55.20 | 24 | 164 | 118 | | Biochemical Oxygen Demand (BOD)(27°C for 3 days) | mg/l | 7.20 | 24 | 15.60 | 6.10 | 52 | 32.81 | | Phenol | mg/l | 0.01 | 0.48 | 0.28 | 0.01 | 0.85 | 0.36 | | Ammonia (as NH4) | mg/l | 0.85 | 21 | 6.13 | 3.20 | 83 | 26.36 | | Total Cyanide (as CN ⁻) | mg/l | BDL
(DL:0.02) | 0.18 | 0.05 | BDL
(DL:0.02) | 0.40 | 0.05 | | Parameter | UOM | | ETP-1 | | ETP-2 | | | |--|-------|------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | Farameter | UCIVI | Min | Max | Avg | Min | Max | Avg | | рН | - | 6.70 | 7.41 | 7.06 | 6.70 | 7.62 | 7.16 | | Total Suspended Solid | mg/l | BDL
(DL:2.5) | 74 | 18.61 | BDL
(DL:2.5) | 28 | 7.43 | | Oil & Grease | mg/l | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | | Chemical Oxygen Demand (COD) | mg/l | BDL
(DL:4.0) | 20 | 10.88 | BDL
(DL:4.0) | 24 | 9.20 | | Biochemical Oxygen Demand (BOD)(27°C for 3 days) | mg/l | BDL
(DL:2.0) | 5.40 | 3.24 | BDL
(DL:2.0) | 6.60 | 2.95 | | Iron as Fe | mg/l | BDL
(DL:0.05) | 2 | 0.62 | 0.06 | 1.10 | 0.30 | | Parameter | UOM | | ETP-3 | | CRM ETP | | | |--|------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------| | Parameter | OOW | Min | Max | Avg | Min | Max | Avg | | рН | - | 6.60 | 7.50 | 7.05 | 7.01 | 7.59 | 7.26 | | Total Suspended Solid | mg/l | BDL
(DL:2.5) | 37 | 15.31 | BDL
(DL:2.5) | 92 | 24.06 | | Oil & Grease | mg/l | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | BDL
(DL:5.0) | | Chemical Oxygen Demand (COD) | mg/l | BDL
(DL:4.0) | 52 | 24.90 | BDL
(DL:4.0) | 104 | 39.20 | | Biochemical Oxygen Demand (BOD)(27°C for 3 days) | mg/l | 2.20 | 13 | 6.87 | BDL
(DL:2.0) | 29 | 10.77 | | Iron as Fe | mg/l | 0.14 | 0.68 | 0.347 | BDL
(DL:0.05) | 1.8 | 0.733 | ### 3. Sewage Treatment Plant -Treated outlet quality | Doromotor | UOM B | | BF-1 STP | | S | SMS-1 STP | | AEL STP | | | Colony STP | | | |-----------|-------|-----------------|----------|------|------|-----------|-------|-----------------|------|-------|----------------|------|-------| | Parameter | OOW | Min | Max | Avg | | рН | - | 6.79 | 7.52 | 7.07 | 7.02 | 7.55 | 7.23 | 6.79 | 7.64 | 7.19 | 6.79 | 7.52 | 7.07 | | TSS | mg/l | BDL
(DL:2.5) | 41 | 7.07 | 19 | 99 | 63 | BDL
(DL:2.5) | 74 | 21.2 | 5.4 | 56 | 22.83 | | BOD | mg/l | BDL
(DL:2.5) | 7.8 | 3.7 | 4 | 44 | 18.15 | 4.3 | 28 | 12.55 | BDL
DL:2.5) | 28 | 13.56 | ### 4. Plant Discharge Water Quality Analysis report. | Parameter | UOM | Dischar | ge to Ling | ra Nallah | Discharge to KisindaNallah | | | | |--|------|-----------------|-----------------|-----------------|----------------------------|-----------------|-----------------|--| | Farameter | Olvi | Min | Max | Avg | Min | Max | Avg | | | рН | ı | 7.15 | 10.80 | 8.04 | 6.92 | 9.42 | 8.11 | | | Total Suspended Solid | mg/l | 35.00 | 89.00 | 45.68 | 21.00 | 130.00 | 36.52 | | | Oil & Grease | mg/l | BDL
(DL:4.0) | BDL
(DL:4.0) | BDL
(DL:4.0) | BDL
(DL:4.0) | BDL
(DL:4.0) | BDL
(DL:4.0) | | | Chemical Oxygen Demand (COD) | mg/l | 28.00 | 48.00 | 38.90 | 22.00 | 59.00 | 30.90 | | | Biochemical Oxygen Demand (BOD)(27 ° C for 3 days) | mg/l | 3.20 | 6.30 | 4.35 | 2.80 | 4.60 | 3.73 | | | Phenol | mg/l | BDL
(DL:0.5) | BDL
(DL:0.5) | BDL
(DL:0.5) | BDL
(DL:0.5) | BDL
(DL:0.5) | BDL
(DL:0.5) | | | Ammoniacal Nitrogen | mg/l | 0.72 | 3.80 | 2.37 | 0.19 | 0.41 | 0.28 | | | Total Cyanide | mg/l | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | BDL
(DL:0.1) | | ### 4. Ambient Air Quality | Parameters | Doromotoro LloM Norm | | CAAQMS-1 | | CAAQMS-2 | | | CAAQMS-3 | | | | |-----------------|----------------------|------|----------|--------|----------|-------|--------|----------|-------|--------|--------| | Parameters | UoM N | Norm | Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | | PM10 | µg/m³ | 100 | 30.82 | 198.00 | 90.93 | 72.80 | 261.00 | 144.84 | 45.40 | 291.24 | 126.98 | | PM2.5 | μg/m³ | 60 | 19.40 | 93.61 | 45.41 | 28.50 | 95.65 | 54.70 | 19.95 | 147.71 | 58.34 | | SO ₂ | μg/m³ | 80 | 10.53 | 21.30 | 14.09 | 15.85 | 24.91 | 20.33 | 2.05 | 27.91 | 7.19 | | NO ₂ | µg/m³ | 80 | 11.81 | 30.49 | 20.49 | 8.90 | 9.80 | 9.51 | 9.80 | 33.53 | 17.91 | | CO | mg/m³ | 2 | 0.65 | 0.71 | 0.68 | 0.66 | 0.83 | 0.75 | 0.51 | 0.90 | 0.72 | | Doromotoro | Пем | Morm | | CAAQMS-4 | ı. | CAAQMS-5 | | | |-----------------|-------|------|-------|----------|--------|----------|--------|--------| | Parameters | UoM | Norm | Min | Max | Avg | Min | Max | Avg | | PM10 | μg/m³ | 100 | 32.70 | 253.62 | 139.09 | 49.13 | 236.87 | 138.25 | | PM2.5 | μg/m³ | 60 | 15.92 | 113.19 | 53.34 | 16.32 | 79.74 | 48.42 | | SO ₂ | μg/m³ | 80 | 5.52 | 7.96 | 6.49 | 11.66 | 17.49 | 13.57 | | NO_2 | μg/m³ | 80 | 12.01 | 16.54 | 14.00 | 7.55 | 11.30 | 9.06 | | CO | mg/m³ | 2 | 0.20 | 0.66 | 0.31 | 0.50 | 0.96 | 0.61 | | Darameters | UoM | Norm | C | AAQMS-6 | CAAQMS-7 | | | | |-----------------|-------|--------|-------|---------|----------|-------|--------|--------| | Parameters | UOIVI | NOTIII | Min | Max | Avg | Min | Max | Avg | | PM10 | μg/m³ | 100 | 49.52 | 205.63 | 119.78 | 54.24 | 290.74 | 163.85 | | PM2.5 | μg/m³ | 60 | 16.64 | 69.40 | 39.17 | 22.38 | 143.63 | 72.69 | | SO ₂ | μg/m³ | 80 | 8.18 | 11.26 | 9.57 | 11.61 | 50.63 | 30.68 | | NO ₂ | μg/m³ | 80 | 8.10 | 27.42 | 22.27 | 8.60 | 36.51 | 21.98 | | CO | mg/m³ | 2 | 0.26 | 1.08 | 0.76 | 0.66 | 1.26 | 0.85 | <u>NB</u>. CAAQMS 1: Near Township; CAAQMS 2: Near AEL Boundary; CAAQMS 3: Near CRM; CAAQMS; 4: Near Water Complex; CAAQMS 5: Near Coke Oven 2; CAAQMS 6: Near Wagon Tippler; CAAQMS 7: Near Material Gate Values are derived from 24 hourly average data except CO values are derived from 8 hourly average data. ### PART - D | Hazardous Wastes (As specified under The Hazardous and Other Wastes (Management & Transboundary Movement Rules, 2016) | | | | | | |---|--|---|--|--|--| | | Total Quantity (MT) | | | | | | Hazardous waste | During the previous
Financial Year
(2022-23) | During the current
Financial Year
(2023-24) | | | | | (a) From Process | | | | | | | Used/ Spent Oil | 256 | 276.83 | | | | | Waste residue containing oil | 36.70 | 105.15 | | | | | Spent Ion Exchange Resin | 0 | 0 | | | | | Rejected Chemical Container | 5957 Nos. & 20.18
MT | Nil | | | | | Insulation Material | 85 | 97.58 | | | | | Alkali Residue | 12.10 | 15 | | | | | Oily Sludge | 122 | 285.15 | | | | | Zinc Ash & Zinc Dross | 510 | 394.55 | | | | | Spent Solvent (Waste Thinner – Oily Waste) | 3.95 | 90.76 | | | | | (b) From Pollution Control Facilities | | | | | | | BOD plant Sludge | 2457 | 3739.68 | | | | | Decanter Tar Sludge | 1499 | 1860 | | | | | ETP Sludge/Chemical Sludge from wastewater treatment plant | 780 | 673.84 | | | | | Exhaust Air or Gas cleaning residues | 188566 | 237697.76 | | | | NB: Exhaust Air or Gas cleaning residues: GCP sludge of BF & BOF, FES dust & bag filter dust of SMS, and Exhaust air of BF, Lime Fines dust. ## PART – E Solid Wastes ### **Total Quantity Generated** | | Total Quantity Generated (MT) | | | | |---|--|---|--|--| | Name of the Waste | During the previous
Financial Year
(2022-23) | During the current
Financial Year
(2023-24) | | | | (a) From Process | | | | | | 1. Char | 162983 | 163377 | | | | 2. BF Slag | 1847873 | 1892405 | | | | 3. SMS Slag | 871195 | 989074 | | | | 4. Bottom Ash | 33669 | 27567 | | | | (b) From Pollution Control Facilities | | | | | | 1. Fly Ash | 324752 | 419397 | | | | APC Dust (ESP, Bag filter Dust, DRI ESP dust, Lime fines dust, FES dust & GCP Sludge) | 155844 | 237698 | | | | 3. Mill Scale | 62026 | 73430 | | | ### (c) (1). Total Quantity Recycled/Reutilized within the Unit | | Total Quantity Recycled/Reutilized within the Unit (MT) | | | | |--|---|---|--|--| | Name of the Waste | During the previous
Financial Year
(2022-23) | During the current
Financial Year
(2023-24) | | | | 1. Char | 100838 | 80756 | | | | 2. SMS Slag | 469536 | 2441562 | | | | 3. BF Slag | 24 | 0 | | | | 4. APC Dust (ESP, Bag filter Dust, DRI | | | | | | ESP dust, Lime fines dust, FES dust & | 29694 | 271453 | | | | GCP Sludge) | | | | | | 5. Mill Scale | 60830 | 92212 | | | ### (c) (2). Total Quantity Sold | | Total Quantity Sold (MT) | | | | |---|--|---|--|--| | Name of the Waste | During the previous
Financial Year
(2022-23) | During the current
Financial Year
(2023-24) | | | | 1. Char* | 79792 | 82563 | | | | 2. SMS Slag | 451662 | 3090 | | | | 3. BF Slag | 1921678 | 1907127 | | | | 4. APC Dust (ESP, Bag filter Dust, DRI ESP dust, Lime fines dust, FES dust) | 101788 | 332 | | | ^{* 2771} MT Char utilized/ sold from legacy stock ### (c) (3). Total Quantity Disposed/Stored | Name of the Waste | Total Quantity (MT) | | | | |---|---------------------|---------|--|--| | Name of the waste | 2022-23 | 2023-24 | | | | SMS Slag (Stored inside the plant) | Nil | Nil | | | | BF Slag (Stored inside the plant) | 26064 | Nil | | | | 3. APC Dust (ESP, Bag filter Dust, DRI | | | | | | ESP dust, Lime fines dust, FES dust & | 24363 | Nil | | | | GCP Sludge) | | | | | | 4. Mill Scale (Stored inside the plant) | 1196 | Nil | | | | 5. Fly Ash & Bottom Ash (Utilised | 356629 | 446964 | | | | externally) | 330029 | 440304 | | | | 6. Fly Ash (Stored inside the plant) | 1792 | Nil | | | <u>NB.</u> Fly ash and Bottom Ash generated during 2023-24 were used outside the plant for NH construction, bricks making and reclamation of abandoned stone quarries. PART - F Chemical Composition of majority of waste as produced in process of Tata Steel, Meramandali operation is given below: | Name of the Wastes | Che | mical Co | mpositi | on (%) | Disposal Method | |---------------------|---|--|---|---|---| | ETP-Sludge | SiO ₂ Al ₂ O ₃ Fe(T) TiO ₂ MnO CaO MgO | : 39.21
: 23.32
: 10.3
:0.36
:0.049
:0.78
:1.21 | K_2O | :0.41
:1.65
:0.06
:0.28
:3.51
:0.23
:16.28 | Steel Making Process | | ETP Sludge From CRM | SiO ₂ Al ₂ O ₃ Fe(T) TiO ₂ MnO CaO MgO | : 2.40
: 1.15
: 3.72
: 0.03
: 0.10
:21.81
: 2.54 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | : 1.22
: 0.52
: 0.45
: 0.17
: 17.5
: 1.13
: 42.75 | Stored in special containers followed by disposal at CHWTSDF. | | BOD plant Sludge | Al ₂ O ₃
Fe(T)
TiO ₂
MnO
CaO
MgO
Na ₂ O | : 0.08
: 7.28
: 0.36
: 0.064
: 0.16
:0.02
: 0.24 | K ₂ O
P ₂ O ₅
SO ₃
CI
LOI | : 0.65
: 0.06
: 0.45
: 0.23
: 80.2 | Recycle in Coke Oven with in plant permises | | Decanter Tar Sludge | Al ₂ O ₃
Fe(T)
TiO ₂ | : 0.04
: 0.01
: 0.94 | K ₂ O
P ₂ O ₅
SO ₃ | : 0.026
: 0.16
: 0.07 | Recycle in Coke Oven with in plant permises | | | CaO :
MgO : | 0.001
0.015
0.003
0.005 | CI
LOI | : 0.29
: 66.4 | | |-------------------------------|--|--|---|--|---| | Alkali Residue | Fe(T) :
TiO ₂ :
MnO :
CaO :
MgO :
Na ₂ O : | 0.84
49.97
0.21
0.374
1.87
1.13
0.38 | K ₂ O
P ₂ O ₅
SO ₃
CI
LOI | : 0.42
: 0.001
: 0.85
: 0.16
: 43.2 | Stored in designated containers followed by disposal at CHWTSDF. | | Flue Dust | Al ₂ O ₃ :
Fe(T) :
TiO ₂ :
MnO :
CaO :: | 4.18
1.79
57.7
0.09
0.056
2.28
0.74 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | :1.13
:1.37
:0.001
:1.78
:10.24
: 0.13
:11.4 | Reused in Sinter Plant with in plant permises | | BOF GCP Sludge (LD
Sludge) | Al ₂ O ₃ :
Fe(T) :
TiO ₂ :
MnO :
CaO : | 4.32
1.78
53.1
0.12
0.095
12.45
4.02 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | :1.16
:0.97
:0.001
:0.31
:0.85
:0.075
:2.75 | Reused in Sinter Plant with in plant permises | | SMS Slag | Al ₂ O ₃ :
Fe(T) :
TiO ₂ :
MnO :
CaO : | 13.42
1.78
26.7
0.84
0.022
45.22
10.80 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | :1.58
:0.88
:0.20
:0.20
:0.07
: 0.27
:0.52 | Processed in MRP for separation of Mag and Non-Mag. Magnetic material recycled in steel making process. Non-Mag being used in sinter, brick manufacturing, & road making. | | Lime Fine De-dusting
Dust | Al ₂ O ₃ :
Fe(T) :
TiO ₂ :
MnO :
CaO : | 2.41
1.12
2.68
0.10
0.066
45.63
12.8 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | :3.01
:0.89
:0.03
:0.26
:5.01
: 0.58
:23.15 | Reused in Sinter Plant with in plant permises | | Mill Scale | Al ₂ O ₃ :
Fe(T) :
TiO ₂ :
MnO :
CaO : | 0.09
0.32
65.4
0.01
0.012
0.20
0.99 | Na ₂ O
K ₂ O
P ₂ O ₅
SO ₃
C
CI
LOI | :1.33
:0.74
:0.001
:0.03
:0.13
: 0.05
:2.47 | Reused in Sinter Plant with in plant permises | | GCP Dust | | 14.65
1.94 | Na ₂ O
K ₂ O | :1.33
:0.87 | Reused in Sinter Plant with in plant permises | | | Fe(T) TiO ₂ MnO CaO MgO | : 29.3
:0.15
:0.049
:3.44
:1.45 | P ₂ O ₅
SO ₃
C
CI
LOI | :0.001
: 1.46
: 30.7
: 0.45
: 35.71 | | |--------------------|---|---|--|---|----------------------| | | SiO ₂ | : 32.99 | Na₂O | :1.55 | Sold to cement plant | | | Al ₂ O ₃
Fe(T) | : 15.58
: 1.10 | K ₂ O
P ₂ O ₅ | :1.34
:0.001 | | | BF Granulated Slag | TiO ₂ | :0.71 | S0 ₃ | : 1.61 | | | | MnO | :0.065 | С | : 0.24 | | | | CaO | :31.77 | CI | : 0.14 | | | | MgO | :9.14 | LOI | : 0.61 | | ### PART – G | SN | Pollution abatement
Measures taken in 2023-24 | Impact of pollution control measure on conservation of natural resources and cost of production | |----|--|--| | 1 | Water Management | Freshwater consumption in closed circuit has been reduced by increasing the Cycle of Concentration (COC) up to 8. | | | | Installation of decanter to recover water from sludge of primary treatment plant. | | 2 | Installation of APCE | Reduction in specific PM emission and to be continued. Installation of high frequency transformer rectifier (HFTR) and micro-pulse at Sinter Plant and HFTR at DRI to reduce stack emission. | | 3 | Green Belt Development | 41821 nos. saplings were planted both inside and outside the plant during April 2023 to March 2024. | | 4 | Dust Suppression | 05 Nos. of vehicle mounted mist canon cum road washers have been engaged to control fugitive dust. 43 KMs of road has been concreted/ paved and 10 Nos. of mechanical road sweeping machines have been engaged for road cleaning. Dust suppression system has been installed in Wagon Tippler to reduce fugitive dust emission during Wagon tippling. Pre wetting of railway wagons are being made to reduce fugitive dust emission. Martin lip double skirt rubber has been installed at conveyor junction houses to reduce fugitive dust emission. 5 Nos. of wheel washing systems have been installed at RMHS/RMPP, DRI, WHRB, Blast Furnace Power Plant (I&II). Installation of metallic screen barrier along the boundary line at RMHS has been completed. | | 5 | PM10 Analyzer Installed | 6 nos. of Portable PM ₁₀ Analyzer have been installed at strategic location of different unit to assess the Ground Level Concentration of PM ₁₀ . | |---|---|---| | 6 | Installed Fluoride treatment plant at Coke Oven and SMS | Commissioned Fluoride Treatment Plant for treatment of Fluoride in Coke Oven 2 and SMS wastewater. | | Cost Estimation of Pollution Control (in Rs. Crores) | | | | | | |--|---|--|--|--|--| | Description | Expenditure in crores during 2023-24 (OPEX) | Expenditure in crores during 2023-24 (CAPEX) | | | | | Air Pollution Control | 259.52 | 354.00 | | | | | Water Pollution Control | 38.22 | 144.00 | | | | | Solid Waste
Management | 175.62 | - | | | | | Hazardous Waste
Management | 1.53 | - | | | | | Miscellaneous# | 8.47 | - | | | | | Total | 483.36 | 498.00 | | | | [#]Miscellaneous extenditure includes environment. ### **Details of Plantation (nos.) done from April 2023 to March 2024** | Month | Plantation in Numbers | | Species | | |----------------|-----------------------|---------|---|--| | Wonth | Inside | Outside | Species | | | April 2023 | 30 | 0 | Peltophorum, Terminalia cattapa, Pongamia, Kadamba, Pongamia, Neem, Mimousopselangi, Michelia Champak, Samnea samam, Cassia | | | May 2023 | 119 | 0 | | | | June 2023 | 4737 | 49 | | | | July 2023 | 14462 | 160 | | | | August 2023 | 6486 | 0 | | | | September 2023 | 9770 | 0 | | | | October 2023 | 3775 | 0 | | | | November 2023 | 0 | 0 | seamea, Jacaranda, Cassia fistula, Momousops elangi, Custard apple, | | | December 2023 | 124 | 0 | | | | January 2024 | 1570 | 0 | Mango, Jackfruit, Guava, Sapota | | | February 2024 | 0 | 0 | | | | March 2024 | 539 | 0 | | | | Total | 41612 | 209 | | | #### PART - H Additional measures/investment proposals for environmental protection including abatement of pollution, and prevention of pollution. - Upgradation of the existing pollution control equipment to minimize the levels of particulate matter (PM) emissions. - Improvement in water recycling facility for further reduction in specific water consumption. - New pollution control equipment is with more stringent design with less emission value. - Installation of 6 Nos. of HD IP Cameras with data connectivity to PCB. ### PART - I ### Any other undertaken project for improving the quality of environment - Boiler of Captive power plants have been converted from coal fired to gas fired, thus there is reduction in generation of fly ash. - LD slag after metal recovery, is being used internally in the manufacturing process as well as externally in brick, road making & hardstand works. Slag Atomisation Plant is also in operation. - Zero effluent discharge (ZED) installation is in advance stage and will be completed by FY 25. - Energy efficiency improvement in operations of TSM works by installing variable Frequency Drive and Back Pressure Turbo Generator. - Installation of industrial vacuum cleaner (IVC) at Junction houses and material transfer point. - Installation of metallic wind barrier at RMHS area to control dust emission. - Installation of DE system at junction house 34, 34A, 35 & 74 to control emission. - Installation of DFDS system at mixing house of sinter plant. - Installation of 3rd dedusating car unit at Coke Oven -1. - M/s. Tata Steel Limited, Meramandali is certified by Integared Management System (ISO 14001:2015, ISO 9001:2015 & ISO 45001:2018). IMS audit is being carried out to comply the requirement. ******