

Regd Post with A/D

Ref.No.: MGM/P&E/689/15

Date: 27/09/2015

The Member Secretary, State Pollution Control Board, Orissa, A/118, Nilakantha Nagar, Bhubaneswar

Sub: Submission of Annual Environment Statement (FORM-V)

Dear Sir,

We are enclosing herewith two sets of Annual Environment Statement in Form-V for Bamebari Manganese Mine, M/s TATA Steel Ltd. for the year ending 31st March'2015.

This is for your kind perusal.

Thanking you,

Yours faithfully,

F: TATA STEEL LTD.

Manager

Bamebari Manganese Mine

Encl: as above.

Copy to:

 The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Orissa with enclosure.

ENVIRONMENTAL STATEMENT 2014-15

UNDER RULE 14 OF ENVIRONMENT (PROTECTION) RULES, 1986

In

FORM - V

BAMEBARI MANGANESE MINES TATA STEEL LIMITED

SEPTEMBER 2015

Environmental Statement: Bamebari Manganese Mines - 2014-15

FORM V

[See Rule 14 of Environment (Protection) Rules, 1986]

ENVIRONMENTAL STATEMENT FOR THE FINANCIAL YEAR ENDING THE 31ST MARCH 2015

PART - A

(i) occupier of the industry operation or process.

Name and Address of the Owner / : **BAMEBARI MANGANESE MINE**

Nominated Owner:-Mr. T.V. Narendran

Managing Director, M/s TATA Steel

Jamshedpur, Dist- East Singhbhum

Jharkhand – 831 001

Agent :-

Mr. S. N. Jha,

Head(Manganese Group of Mines), Joda,

FA & MD, TATA Steel

P.O.: Bichhakundi, Via: Joda Dist: Keonjhar, Orissa – 758 034

(ii) Industry Category : Opencast Mining

: 83,200 TPA (Manganese Ore) (iii) Production Capacity – Units

(iv) Year of Establishment : 1938

(v) Date of the last environmental: 27^{th} Sept'2014

statement submitted

(Vide Letter No. JW/P&E/1054/14,

Dt.27.09.2014)

PART - B

Water and Raw Material Consumption

(1) Water Consumption m³/day

Process : 35.97 m³/day (Water sprinkling – Avg. during 2014-15)

Cooling : Nil

Domestic : $76.68 \text{ m}^3/\text{day}$ (Avg. during 2014-15)

Name of the Products	Process water consumption	per unit of product output
	During the previous	During the current
	Financial year	Financial year
	(1)	(2)
(1) Manganese Ore	Nil	Nil

Remarks: Manganese Ore is produced by semi mechanized Mining method, which does not involve beneficiation and thus precludes the consumption of water.

(2) Raw material consumption

Name of the	Name of	Consumption of	raw materials per unit
raw materials	the product	During the previous	During the current
		Financial year	Financial year
Manganese	Manganese	Year - 2013-14	Year - 2014-15
Ore	Ore	Production :-	Production:-
		53989.537 MT	52,498.560MT
		Despatch:-	Despatch:-
		59628.99 MT	36751.190MT

Remarks: Produced Manganese Ore dispatched to Ferro Alloys Plants within India.

PART - C

Pollution discharged to environment / unit of output

(Parameter as specified in the Consents issued)

(III III III III III III III III III I		/	
Pollution	Quantity of	Concentrations of	Percentage of
	pollutants	Pollutants in	variation from
	discharged	discharges	prescribed
	(mass/day)	(mass/volume)	standards with
			reasons
(a) Water	removal of overbur size and then trans	inganese Ore production of the production of the size of the custome ter. Thus, there is no pro	g of ore to required er does not require

	The six month average surface water quality data is enclosed as Annexure – I. It shows that the concentrations of the pollutants are well within the permissible standards.
(b) Air	Since this is an open cast Mine, the dust generation is mainly due to the movement of vehicles in the haul roads, drilling activities etc, which is fugitive in nature and cannot be quantified. The fugitive dust is allayed by sprinkling of water by mobile tanker and development of green barrier by plantation around the residential area.
	The monthly average ambient air quality data is enclosed as Annexure – II . It shows that the concentrations of the pollutants are well within the permissible standards.

PART – D

Hazardous Wastes

[As specified under the Hazardous wastes (Management & Handling) Rules, 1989]

Hazardous Wastes	Total Q	uantity
	During the previous	During the current
	Financial year	Financial year
	Year - 2013-14	Year - 2014-15
(i) From Process		
Waste Oil (in Ltrs.)	4.875 Ltrs.	3.5 Ltrs.
Used Oil (in Ltrs.)	134 Ltrs	98.80 Ltrs
Cotton Waste (in Kgs)	Nil	Nil
Duster (in Nos.)	Nil	Nil
Filters (in Nos.)	Nil	Nil
(ii) From pollution control	Nil	Nil
facilities		

PART - E

Solid Wastes

	Total Q	uantity
_	During the previous	During the current
	Financial year	Financial year
	Year – 2013-14	Year – 2014-14
(a) From Process	392616 m ³	615084.812 MT
(Overburden rejects) (b) From pollution control facilities	Nil	Nil
(c) (1) Quantity recycled or re-utilized within the	Nil	Nil
unit (2) Sold (3) Disposal	Nil 392616 m ³	Nil 615084.812 MT

PART - F

Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

- Characterization of Hazardous Waste: - The composition of hazardous wastes like Waste Oil & used oil are Hydrocarbons, lead and used acids. The composition of the solid wastes (Overburden and rejects) contains lateritic morrum, shale and quartzite.

- Disposal Practice:-

- SOLID WASTES -The overburden is systematically and scientifically dumped on a geologically barren area and the same will be reclaimed by plantation after being declared inactive.
- WASTE OIL -The waste oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced and caution board displayed. During transfer of waste oil to barrels, a trough is placed underneath in order to prevent land contamination due to oil spillage. Then at a fixed interval, these barrels are returned to Ferro Manganese Plant Stores for final disposal through auction to the authorized party.

- ➤ USED COTTON WASTES The used cotton wastes generated at various locations are kept in designated barrels and at a fixed interval, these wastes are handed over to the Shift in-charge of the Furnace Section of FAP, Joda for incinerating in the Electric Are Furnace at a temperature of more than 1100 degree C.
- Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production.

- 1. Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- 2. All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweet morrum over it.
- 3. Wet drilling has been implemented in all drills. Controlled blasting pattern is being followed.
- 4. 28145 nos. of saplings of various forestry species were planted covering an area of 3.5 hectare within the leasehold areas of Bamebari Mn.Mine with a survival rate of 61.68% during the year 2014-15.
- 5. An amount of Rs. 30,23,058/- was incurred towards environmental monitoring job, plantation activities and construction of toe-wall, garland drain and check dams as included in environment management cost.
- 6. In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.
- 7. The total expenditure incurred for pollution abatement measures are included in overhead cost. The expenditure for Environment Management during the year 2014-15 was Rs. 30,23,058/- (Rs.57.58/MT)(Specific Average).

PART – H

Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution.

- a) Garland drains and toe wall around the OB dumping shall be provided to check and channelize surface run-off.
- b) Plantation of forestry species shall be planted over the inactive waste dump slopes to arrest the airborne dust.

PART - I

Any other particulars for improving the quality of environment.

- 1. With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - Ground Water Level at nearby bore wells
 - *Trace metal in dust fall*
 - Ground water quality at lower level
 - Meteorological monitoring
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- 2. Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution :-
 - *Water sprinkling on the haul road,*
 - Provision of dust masks to the workmen,
 - Adoption of wet drilling arrangement in the drill machines and
 - *Black topped road in the residential colony.*
- 4. Measures taken to control Water Pollution :-
 - Construction of toe wall and garland drain along the dump slope to prevent surface run-off during monsoon.
 - Construction of soak pits for discharge of sanitary sewage.
 - Provision of oil separation pit for effluents coming out of work shop.
- 5. Measures taken to control Noise & Ground Vibration :-
 - Thick plantation has been developed around the mines and office building to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and

- Workmen are provided with ear-muff while working near heavy earth moving machineries.
- 6. Measures taken to control Land Degradation :-
 - Afforestation around the non-active dump for stabilization and
 - Reclamation and rehabilitation of mined out area as per approved Scheme of Mining.
- 7. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO classifications. A total no. of 14 employees (100%) were examined during 2010-11. Similarly, 60 nos. of employees were examined during 2011-12. During 2011-12, 219 nos. of employees were examined while during 2012-13, a total no. of 240 employees (both Departmental and Contractual) were examined. During 2013-14 a total no. of 72 employees (Departmental-9 and contractor employees-63) & during 2014-15 a total of 78 no (Departmental-4 and Contractor-74) were examined. The employees of Bamebari Manganese Mines and Tiringpahar Manganese Mines are shown together. There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease.
- 8. The mine is certified with ISO-14001 (Environment Management System).

Manager, Bamebari Mn.Mine M/s. TATA STEEL LTD.

Annexure – I
SIX MONTHS AVERAGE OF WATER QUALITY REPORT

BAMEI	BARI (UPSTREAM) W1			Apı	ril'14	Ma	y'14	Jun	e'14	July	y'14	Aug'14		Sep'14		Avg 6 months
Sl.	Parameters	Unit	Standards as per	1st Report	2nd Report	W-1										
1	Colour & Odour		300 & \$	CL & U/O	CL & U/O	CL & U/O	CL & U/O	15 & U/O	15 & U/O	14& U/O	14 & U/O	10& U/O	16& U/O	15& U/O	14& U/O	9.75& U/O
2	Suspended Solids	Mg/l	\$	29	26	17	19	105	97	128	121	137	148	141	131	91.58
3	Particular Size of S.S.	μ(micron)	\$	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850
4	Dissolved Solids	Mg/l	1500	116	109	96	101	156	138	164	122	179	189	185	172	143.92
5	PH		6.5-8.5	7.2	7.1	7.1	7.1	7.2	7.2	7.1	7.2	7.2	7.2	7.2	7.1	7.16
6	Temperature	°C	\$	25	25	25	25	25	25	25	25	25	25	25	25	25.00
7	Oil & Grease	Mg/l	0.1	ND												
8	Total Residual Chlorine	Mg/l	\$	ND												
9	Amm. Nitrogen as N	M g/l	\$	0.36	0.29	0.24	0.21	0.83	0.57	0.47	0.52	0.58	0.68	0.62	0.59	ND
10	Total Kjeldal Nitrogen as N	Mg/l	\$	0.91	0.88	0.79	0.75	1.48	1.36	1.37	1.21	1.43	1.58	1.55	1.47	1.23
11	Free Ammonia as NH ₃	M g/l	\$	ND	ND	ND	ND	ND	ND	0.003	0.005	0.005	0.006	0.005	0.006	ND
12	Dissolved Oxygen	M g/l	4	7.2	7.2	7.3	7.2	7.4	7.1	7.3	7.3	7.4	7.3	7.3	7.4	7.28
13	BOD(3) days at 27 ^o C	M g/l	3	1.09	1.04	0.96	1	1.25	1.14	1.17	1.21	1.25	1.33	1.34	1.19	1.16
14	COD	M g/l	\$	3.17	3.21	2.79	3.11	3.78	3.29	3.68	3.52	3.59	4.01	3.68	3.54	3.45
15	Arsenic as As	M g/l	0.2	BDL												
16	Mercury as Hg	M g/l	\$	BDL												
17	Lead as Pb	M g/l	0.1	BDL												
18	Cadmium as Cd	M g/l	0.01	BDL												
19	Hexa Chromium as Cr +6	M g/l	0.05	BDL												
20	Total Chromium as Cr	M g/l	\$	0.14	0.096	0.092	0.087	0.13	0.076	0.15	0.093	0.18	0.2	0.22	0.17	0.136
21	Copper as Cu	M g/l	1.5	BDL												
22	Zinc as Zn	M g/l	15	0.15	0.13	0.11	0.09	0.17	0.18	0.19	0.12	0.25	0.33	0.31	0.25	0.19
23	Selenium as Se	M g/l	0.05	BDL												
24	Nickel as Ni	M g/l	\$	BDL												
25	Cyanide as CN	M g/l	0.05	BDL												
26	Fluoride as F	M g/l	1.5	0.048	0.038	0.035	0.029	0.09	0.14	0.087	0.089	0.079	0.088	0.085	0.065	0.07
27	Diss. Phosphate as P	M g/l	\$	BDL												
28	Sulphide as S	M g/l	\$	BDL												
29	Phenolic Compounds as C ₆ H ₅ OH	M g/l	\$	BDL												
30	Bio-assay Test		\$	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%.
31	Manganese as Mn	M g/l	\$	0.055	0.048	0.039	0.036	0.11	0.092	0.09	0.085	0.074	0.084	0.084	0.084	0.073
32	Iron as Fe	M g/l	50	0.22	0.19	0.18	0.16	0.43	0.35	0.56	0.65	0.68	0.79	0.74	0.67	0.47
33	Vanadium as V	M g/l	\$	BDL												
34	Nitrate as NO ₃	M g/l	50	0.18	0.16	0.15	0.13	0.23	0.14	0.19	0.2	0.26	0.32	0.31	0.29	0.21
N.B. :	\$- No Specific Limit , C.L – Colour l	ess, U/O-Un	objectionable , B.	DL- Belo	w detectio											
Vot detec	table															

BAMEI	BARI (DOWNSTREAM) W2			Apı	April'14		y'14	Jun	e'14	July		Aug	g'14	Sel	o'14	Avg 6 months
Sl.	Parameters	Unit	Standards as per	1st Report	2nd Report	W-2										
1	Colour & Odour		300 & \$	CL & U/O	CL & U/O	CL & U/O	CL & U/O	17 & U/O	16 & U/O	16 & U/O	16 & U/O	10 & U/O	19 & U/O	17 & U/O	17 & U/O	10.63& U/O
2	Suspended Solids	M g/l	\$	32	31	21	24	109	101	134	127	144	152	149	139	96.92
3	Particular Size of S.S.	μ(micron)	\$	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850
4	Dissolved Solids	M g/l	1500	120	113	101	106	165	143	172	134	182	197	193	181	150.58
5	PH		6.5-8.5	7.2	7.2	7.1	7.1	7.2	7.1	7.2	7.2	7.2	7.3	7.2	7.2	7.18
6	Temperature	⁰ C	\$	25	25	25	25	25	25	25	25	25	25	25	25	25.00
7	Oil & Grease	M g/l	0.1	ND												
8	Total Residual Chlorine	M g/l	\$	ND												
9	Amm. Nitrogen as N	M g/l	\$	0.41	0.32	0.27	0.28	0.89	0.61	0.51	0.56	0.64	0.72	0.69	0.63	ND
10	Total Kjeldal Nitrogen as N	M g/l	\$	0.96	0.91	0.84	0.82	1.55	1.41	1.43	1.28	1.51	1.64	1.62	1.52	1.29
11	Free Ammonia as NH ₃	M g/l	\$	ND	ND	ND	ND	ND	ND	0.005	0.005	0.006	0.008	0.005	0.007	ND
12	Dissolved Oxygen	M g/l	4	7.2	7.1	7.2	7.2	7.2	7	7.2	7.3	7.3	7.3	7.3	7.3	7.22
13	BOD(3) days at 27 ^o C	M g/l	3	1.11	1.13	1.02	1.14	1.19	1.18	1.22	1.26	1.33	1.41	1.41	1.24	1.22
14	COD	M g/l	\$	3.25	3.29	2.94	3.36	3.9	3.37	3.92	3.6	3.72	4.13	3.93	3.81	3.60
15	Arsenic as As	M g/l	0.2	BDL												
16	Mercury as Hg	M g/l	\$	BDL												
17	Lead as Pb	M g/l	0.1	BDL												
18	Cadmium as Cd	M g/l	0.01	BDL												
19	Hexa Chromium as Cr ⁺⁶	M g/l	0.05	BDL												
20	Total Chromium as Cr	M g/l	\$	0.18	0.11	0.1	0.095	0.16	0.81	0.16	0.097	0.21	0.26	0.28	0.21	0.223
21	Copper as Cu	M g/l	1.5	BDL												
22	Zinc as Zn	M g/l	15	0.16	0.15	0.12	0.099	0.19	0.2	0.2	0.17	0.29	0.38	0.35	0.31	0.22
23	Selenium as Se	M g/l	0.05	BDL												
24	Nickel as Ni	M g/l	\$	BDL												
25	Cyanide as CN	M g/l	0.05	BDL												
26	Fluoride as F	M g/l	1.5	0.054	0.041	0.041	0.033	0.1	0.16	0.092	0.094	0.086	0.093	0.094	0.073	0.08
27	Diss. Phosphate as P	M g/l	\$	BDL												
28	Sulphide as S	M g/l	\$	BDL												
29	Phenolic Compounds as C ₆ H ₅ OH	M g/l	\$	BDL												
30	Bio-assay Test		\$	98%	98%	98%	98%	97%	97%	98%	98%	98%	97%	97%	98%	97.8%.
31	Manganese as Mn	M g/l	\$	0.061	0.052	0.046	0.041	0.12	0.096	0.1	0.091	0.081	0.089	0.092	0.089	0.080
32	Iron as Fe	Mg/l	50	0.26	0.032	0.040	0.041	0.12	0.39	0.62	0.73	0.73	0.84	0.79	0.71	0.52
33	Vanadium as V	Mg/l	\$	BDL												
34	Nitrate as NO ₃	Mg/l	50	0.21	0.19	0.17	0.15	0.27	0.17	0.22	0.28	0.33	0.39	0.36	0.31	0.25
N.B. :	\$- No Specific Limit , C.L – Colour l						0.13	0.27	0.17	0.22	0.20	0.55	0.57	0.50	0.51	0.20
Vot detec		.c.s., 0,0 0n	oojeenondore, B.	DE DEIO	, acicciio	,										

BAME	BAMEBARI (UPSTREAM) W1			Oc	t'14	No	v'14	De	c'14	Jar	n'15	Feb'15		March'15		Avg 6 months
Sl.	Parameters	Unit	Standards as	1st	2nd	1st	2nd	W-1								
	T ununiocons	o mi	per	Report	Report											
1	Colour & Odour		300 & \$	12 &	CL &	CL &	3.9 &									
				U/O	U/O	U/O										
2	Suspended Solids	M g/l	\$	34	26	31	38	26	31	21	16	28	29	22	26	27.33
3	Particular Size of S.S.	μ(micron)	\$	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850
4	Dissolved Solids	M g/l	1500	123	109	129	131	117	122	106	97	124	134	110	122	118.67
5	PH		6.5-8.5	7.2	7.1	7.2	7.2	7.1	7.2	7.1	7.1	7.2	7.2	7.2	7.2	7.17
6	Temperature	°C	\$	25	25	24	24	23	23	22	22	24	24	25	25	23.83
7	Oil & Grease	Mg/l	0.1	ND	ND	ND										
8	Total Residual Chlorine	Mg/l	\$	ND	ND	ND										
9	Amm. Nitrogen as N	Mg/l	\$	0.38	0.3	0.38	0.39	0.31	0.33	0.19	0.18	0.27	0.27	0.2	0.21	ND
10	Total Kjeldal Nitrogen as N	Mg/l	\$	0.97	0.89	1.05	1.12	0.96	1.04	0.98	0.78	1.19	0.84	1.04	0.77	0.97
11	Free Ammonia as NH ₃	Mg/l	\$	0.005	0.003	0.003	0.004	0.004	0.004	0.002	0.003	0.002	0.003	0.002	0.002	ND
12	Dissolved Oxygen	M g/l	4	7.3	7.3	7.2	7.2	7.3	7.4	7.3	7.3	7.4	7.2	7.4	7.2	7.29
13	BOD(3) days at 27 ^o C	Mg/l	3	1.15	1.06	1.16	1.18	1.11	1.1	0.86	0.96	0.97	1.12	0.89	1.04	1.05
14	COD	Mg/l	\$	3.37	3.17	3.38	3.55	3.29	3.47	2.44	2.58	2.87	3.65	2.58	3.11	3.12
15	Arsenic as As	M g/l	0.2	BDL	BDL	BDL										
16	Mercury as Hg	M g/l	\$	BDL	BDL	BDL										
17	Lead as Pb	M g/l	0.1	BDL	BDL	BDL										
18	Cadmium as Cd	M g/l	0.01	BDL	BDL	BDL										
19	Hexa Chromium as Cr +6	M g/l	0.05	BDL	BDL	BDL										
20	Total Chromium as Cr	M g/l	\$	0.14	0.11	0.19	0.21	0.16	0.17	0.11	0.07	0.15	0.11	0.13	0.09	0.14
21	Copper as Cu	M g/l	1.5	BDL	BDL	BDL										
22	Zinc as Zn	M g/l	15	0.16	0.13	0.17	0.18	0.14	0.14	0.19	0.13	0.19	0.24	0.15	0.19	0.17
23	Selenium as Se	M g/l	0.05	BDL	BDL	BDL										
24	Nickel as Ni	M g/l	\$	BDL	BDL	BDL										
25	Cyanide as CN	M g/l	0.05	BDL	BDL	BDL										
26	Fluoride as F	M g/l	1.5	0.053	0.039	0.06	0.06	0.05	0.07	0.04	0.06	0.04	0.05	0.04	0.05	0.05
27	Diss. Phosphate as P	M g/l	\$	BDL	BDL	BDL										
28	Sulphide as S	M g/l	\$	BDL	BDL	BDL										
29	Phenolic Compounds as C ₆ H ₅ OH	M g/l	\$	BDL	BDL	BDL										
30	Bio-assay Test		\$	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%.
31	Manganese as Mn	M g/l	\$	0.063	0.051	0.052	0.054	0.048	0.048	0.026	0.028	0.021	0.037	0.017	0.03	0.04
32	Iron as Fe	M g/l	50	0.27	0.17	0.33	0.42	0.29	0.39	0.18	0.19	0.26	0.31	0.21	0.25	0.27
33	Vanadium as V	M g/l	\$	BDL	BDL	BDL										
34	Nitrate as NO ₃	M g/l	50	0.18	0.13	0.18	0.26	0.15	0.22	0.12	0.12	0.22	0.18	0.17	0.14	0.17

BAMEI	BARI (DOWNSTREAM) W2			Oc	t'14	No	v'14	De	c'14	Jan	n'15	Fel	b'15	5 March'15		Avg 6 months
Sl.	Parameters	Unit	Standards as per	1st Report	2nd Report	W-2										
1	Colour & Odour		300 & \$	14 & U/O	CL & U/O	3.8& U/O										
2	Suspended Solids	Mg/l	\$	39	28	37	42	28	35	27	23	33	36	26	31	32.08
3	Particular Size of S.S.	μ(micron)	\$	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850	<850
4	Dissolved Solids	Mg/l	1500	129	114	132	136	123	128	114	108	138	141	117	128	125.67
5	PH		6.5-8.5	7.2	7.1	7.3	7.1	7.2	7.2	7.2	7.1	7.2	7.2	7.2	7.3	7.19
6	Temperature	₀ C	\$	25	25	24	24	23	23	22	22	24	24	25	25	23.83
7	Oil & Grease	Mg/l	0.1	ND												
8	Total Residual Chlorine	Mg/l	\$	ND												
9	Amm. Nitrogen as N	Mg/l	\$	0.44	0.35	0.41	0.41	0.37	0.37	0.24	0.21	0.31	0.35	0.23	0.29	ND
10	Total Kjeldal Nitrogen as N	Mg/l	\$	1.11	0.91	1.09	1.15	1.1	1.09	1.1	0.83	1.26	0.92	1.15	0.85	1.05
11	Free Ammonia as NH ₃	Mg/l	\$	0.006	0.003	0.003	0.003	0.004	0.004	0.002	0.003	0.002	0.002	0.002	0.002	ND
12	Dissolved Oxygen	Mg/l	4	7.2	7.2	7.2	7.2	7.3	7.4	7.3	7.3	7.4	7.3	7.3	7.2	7.28
13	BOD(3) days at 27 ^o C	Mg/l	3	1.19	1.11	1.19	1.21	1.15	1.14	0.92	1	1.1	1.18	0.95	1.1	1.10
14	COD	Mg/l	\$	3.45	3.28	3.42	3.58	3.36	3.51	2.53	2.66	3.19	3.79	2.62	3.35	3.23
15	Arsenic as As	Mg/l	0.2	BDL												
16	Mercury as Hg	Mg/l	\$	BDL												
17	Lead as Pb	Mg/l	0.1	BDL												
18	Cadmium as Cd	Mg/l	0.01	BDL												
19	Hexa Chromium as Cr +6	Mg/l	0.05	BDL												
20	Total Chromium as Cr	Mg/l	\$	0.17	0.12	0.22	0.25	0.2	0.19	0.13	0.1	0.19	0.14	0.16	0.1	0.16
21	Copper as Cu	Mg/l	1.5	BDL												
22	Zinc as Zn	Mg/l	15	0.19	0.14	0.2	0.21	0.17	0.16	0.21	0.17	0.22	0.29	0.18	0.22	0.20
23	Selenium as Se	Mg/l	0.05	BDL												
24	Nickel as Ni	Mg/l	\$	BDL												
25	Cyanide as CN	Mg/l	0.05	BDL												
26	Fluoride as F	Mg/l	1.5	0.061	0.045	0.06	0.07	0.06	0.07	0.05	0.06	0.04	0.06	0.05	0.05	0.06
27	Diss. Phosphate as P	Mg/l	\$	BDL												
28	Sulphide as S	M g/l	\$	BDL												
29	Phenolic Compounds as C ₆ H ₅ OH	Mg/l	\$	BDL												
30	Bio-assay Test		\$	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98%	98.0%
31	Manganese as Mn	M g/l	\$	0.069	0.056	0.057	0.058	0.051	0.051	0.033	0.033	0.029	0.045	0.022	0.038	0.045
32	Iron as Fe	Mg/l	50	0.31	0.21	0.38	0.48	0.32	0.42	0.21	0.22	0.33	0.38	0.26	0.29	0.32
33	Vanadium as V	Mg/l	\$	BDL												
34	Nitrate as NO ₃	Mg/l	50	0.21	0.15	0.21	0.3	0.18	0.25	0.15	0.14	0.28	0.22	0.2	0.17	0.21

<u>Annexure – II</u>

BAMEBARI Monthly Avgs	Location	PM10 μg/m3	PM2.5 μg/m3	SO2 μg/m3	NOx μg/m3	CO mg/m3	Mn μg/m3	Ο3 μg/m3	Pb μg/m3	NH3 µg/m3	Benzene μg/m3	Benzo(a) Pyrene ng/m3	Arsenic ng/m3	Nickel ng/m3
April'14	Bamebari Camp	56.89	32.16	4.28	11.43	0.17	0.67	6.58	BDL	BDL	0.72	BDL	BDL	BDL
May'14	Bamebari Camp	50.22	28.32	4.02	11.24	0.13	0.65	5.93	BDL	BDL	0.51	BDL	BDL	BDL
June'14	Bamebari Camp	41.13	24.94	4.14	10.29	0.12	0.62	6.14	BDL	BDL	0.50	BDL	BDL	BDL
JULY'14	Bamebari Camp	32.88	20.81	4.15	10.24	0.12	0.59	5.49	BDL	BDL	0.48	BDL	BDL	BDL
AUG'14	Bamebari Camp	33.75	20.24	4.13	9.46	0.11	0.48	5.45	BDL	BDL	0.53	BDL	BDL	BDL
SEP'14	Bamebari Camp	42.11	24.60	4.17	10.50	0.13	0.63	6.62	BDL	BDL	0.53	BDL	BDL	BDL
6 Months Avgs	Bamebari Camp	42.83	25.18	4.15	10.53	0.13	0.61	6.03	BDL	BDL	0.55	BDL	BDL	BDL

BAMEBARI Monthly Avgs	Location	PM10 µg/m3	PM2.5 μg/m3	SO2 µg/m3	NOx μg/m3	CO mg/m3	Mn μg/m3	Ο3 μg/m3	Pb μg/m3	NH3 µg/m3	Benzene μg/m3	Benzo(a) Pyrene ng/m3	Arsenic ng/m3	Nickel ng/m3
April'14	Bamebari Pit	64.00	35.48	4.98	12.37	0.24	0.77	7.43	BDL	BDL	0.83	BDL	BDL	BDL
May'14	Bamebari Pit	57.00	32.43	4.09	11.19	0.17	0.60	6.48	BDL	BDL	0.52	BDL	BDL	BDL
June'14	Bamebari Pit	49.38	28.69	4.51	11.08	0.16	0.71	6.94	BDL	BDL	0.61	BDL	BDL	BDL
JULY'14	Bamebari Pit	42.88	24.15	4.45	11.15	0.14	0.69	6.35	BDL	BDL	0.59	BDL	BDL	BDL
AUG'14	Bamebari Pit	40.00	24.04	4.13	10.18	0.13	0.56	6.23	BDL	BDL	0.61	BDL	BDL	BDL
SEP'14	Bamebari Pit	48.78	28.18	4.62	11.39	0.17	0.73	7.49	BDL	BDL	0.63	BDL	BDL	BDL
6 Months Avgs	Bamebari Pit	50.34	28.83	4.46	11.22	0.17	0.68	6.82	BDL	BDL	0.63	BDL	BDL	BDL

BAMEBARI Monthly Avgs	Location	PM10 μg/m3	PM2.5 μg/m3	SO2 μg/m3	NOx μg/m3	CO mg/m3	Mn μg/m3	Ο3 μg/m3	Pb μg/m3	NH3 μg/m3	Benzene μg/m3	Benzo(a) Pyrene ng/m3	Arsenic ng/m3	Nickel ng/m3
Oct'14	Bamebari Camp	52.89	30.21	4.57	12.03	0.18	0.70	6.60	BDL	BDL	0.69	BDL	BDL	BDL
Nov'14	Bamebari Camp	53.25	30.46	4.21	12.46	0.15	0.73	6.43	BDL	BDL	0.67	BDL	BDL	BDL
Dec'14	Bamebari Camp	57.44	32.38	4.33	12.57	0.19	0.74	6.51	BDL	BDL	0.69	BDL	BDL	BDL
January'15	Bamebari Camp	56.33	31.96	4.50	11.94	0.17	0.77	6.21	0.00012	BDL	0.73	BDL	BDL	BDL
Feb'15	Bamebari Camp	47.38	27.84	4.24	10.43	0.14	0.66	5.46	BDL	BDL	0.57	BDL	BDL	BDL
March'15	Bamebari Camp	46.11	27.02	4.14	10.94	0.14	0.53	5.38	BDL	BDL	0.66	BDL	BDL	BDL
6 Months Avgs	Bamebari Camp	52.23	29.98	4.33	11.73	0.16	0.69	6.10	BDL	BDL	0.67	BDL	BDL	BDL
BAMEBARI Monthly Avgs	Location	PM10 μg/m3	PM2.5 μg/m3	SO2 μg/m3	NOx μg/m3	CO mg/m3	Mn μg/m3	Ο3 μg/m3	Pb μg/m3	NH3 μg/m3	Benzene μg/m3	Benzo(a) Pyrene ng/m3	Arsenic ng/m3	Nickel ng/m3
Oct'14	Bamebari Pit	60.11	34.43	5.11	12.77	0.23	0.77	7.20	BDL	BDL	0.77	BDL	BDL	BDL
Nov'14	Bamebari Pit	62.00	34.90	4.85	13.38	0.21	0.83	7.26	BDL	BDL	0.77	BDL	BDL	BDL
Dec'14	Bamebari Pit	65.89	37.07	5.04	13.41	0.25	0.84	7.40	BDL	BDL	0.80	BDL	BDL	BDL
January'15	Bamebari Pit	64.33	36.29	5.21	12.91	0.23	0.88	7.17	0.00028	BDL	0.86	BDL	BDL	BDL
Feb'15	Bamebari Pit	54.13	30.89	4.76	11.24	0.18	0.75	6.10	0.00007	BDL	0.67	BDL	BDL	BDL
March'15	Bamebari Pit	53.44	31.50	4.66	11.86	0.19	0.62	6.07	0.00006	BDL	0.76	BDL	BDL	BDL
6 Months Avgs	Bamebari Pit	59.98	34.18	4.94	12.59	0.21	0.78	6.87	BDL	BDL	0.77	BDL	BDL	BDL