[FORM-V] (See rule 14 of The Environment Protection Act,1986)

Environment Statement for the financial year ending 31 March 2021

<u>PART – A</u>

	General Information							
	Name of the Company	Tata Steel BSL Limited						
1.	Name & Address of the owner/occupier of the	Sri Rajeev Singhal						
	industry, operation or process	Managing Director						
		Tata Steel BSL Limited						
		At: Narendrapur, PO: Kusupanga						
		Via: Meramandali, Dist.: Dhenkanal, Pin:						
		759121, Odisha						
2.	Industry Category Primary (STC Code),	Larga Matallurgical Industry						
	Secondary (STC Code)	Large Wetanurgicar muustry						
3.	Production capacity-Units	5.6 MTPA						
4.	Year of establishment	2006						
5.	Date of last statement	29.09.2020						

<u> PART – B</u>

Water & Raw material Consumption						
B-1: Total Water Consumption (m ³ /d)						
Catagomy	Total Water Consu	mption (m ³ /d)				
Category	2019-20	2020-21				
Process (m^3/d)	5581	5312				
Cooling (m^3/d)	30974	34842.9				
Domestic (m^3/d)	1476.0	2637.67				
* Used for other purpose: 8983.9 m ³ /day						
B-2: Water Consumption per unit of the produce	$ct (m^3/MT)$					
	Process Water Consumption per unit of					
Name of the Products	product m	2/MT)				
	2019-20	2020-21				
Steel	4.14	4.02				

B-3: Raw Material Consumption

Name of Raw materials	Name of	Raw material Consumption per unit of product (MT/MT)		
	Products	2019-20	2020-21	
1. Iron Ore & Pellet		1.68	1.79	
3. Limestone & Dolomite		0.68	0.42	
4. Quartz	Steel (Slab	0.03	0.11	
5. Coking Coal	& Billet)	0.71	0.58	
6. Non-Coking coal		0.27	0.45	
7. Scrap		0.07	0.07	
	Total	3.16	3.42	

PART – C

Pollution discharged to Environment per unit of Output (Parameters as specified in the Consent issued)

C-1: Water Pollution									
Pollutant Parameter	Prescribed Standard	Quantity discharge (kg/d)	Concentration discharge (mg/l)	Percentage of variation from prescribed standards with reasons					
-	-	Nil	Nil	-					

Reuse of process effluent is maximum after treatment; action has already been initiated to achieve Zero discharge.

TSBSL's Sustainability framework and Environment Policy subscribe to water conservation philosophy which greatly relies on 5R principles of Reduce, Reuse, Recycle, Recover and Recharge. With continuous efforts to make steel making more water efficient, Tata Steel BSL has taken significant initiatives for water conservation. Reuse of ETP & STP water in DRI & Sinter plants enables these to consume zero fresh water. Installation of a scientifically designed HDPE (High density poly Ethelene) lined pond of capacity 50,000 m³, efficiently manages the surface run offs from Coke Oven and RMHS area. However, the most significant achievement was successful trial of UV (Ultraviolet) reactor technology for total cyanide removal from coke oven wastewater by our Environment Research & Development team.

Details of few specific ETPs are given below.

Effluent treatment plant (03 Nos.) - The wastewater generated from DRI process and Power plant is being taken into effluent treatment plants and the treated water is being reused in Cooling towers, DRI, Sinter Plant and fire hydrant. Treated water is also being used for dust suppression and gardening purpose.

Coke oven - The wastewater generated from Coke-oven process is being treated in a specific effluent treatment plant called Biological Oxidation and Dephenolisation plant. A pilot UV reactor of capacity 5m3/hr is in operation and 80m³/hr UV reactor has been commissioned to treat organic pollutant in place of chemical treatment. After treatment the water is being reused in coke and slag quenching.

Biological Oxidation and De-Phenolisation Plant (BOD) & UV (Ultraviolet) reactor to treat organic compound at Coke oven

Complete Removal of color and odor

Blast furnace - Waste water generated from Gas Cleaning Plant is being treated in effluent treatment plants and the treated water is being recycled back to the Gas Cleaning Plant process.

Steel Melting Shop (SMS) - Waste water generated from process is being treated in effluent treatment plants and the treated water is being recycled back to the Steel Melting Shop process.

Cold Rolled Mill - Waste water generated from process is being treated in effluent treatment plants and the treated water is being used in ash conditioning.

Hot Strip Mill - Process wastewater is being skimmed for oil & scale and then recycled back to the HSM cooling process.

Sewage treatment plants (STP) – Total five nos. of sewage treatment plant is in operation in the entire Tata steel BSL complex. Sewage generated from Colony/office is being treated in Sewage treatment plants and the treated water is 100% reused for low end application in plant, cooling tower make up and gardening purpose.

Curfo og Water (<u>]]:4</u> A]	man and fam	manial frame A	
Surface water u	лианих Апаг	vsis redort tor	Derioa from A	
		1010 10 0010 101	J	

Deremators	UOM	Standard	Lingra Nala			Kisinda Nala		
Farameters	UOM	Stanuaru	Min	Max	Avg.	Min	Max	Avg.
pH Value	-	6.0-9.0	7.45	8.37	7.82	7.13	8.22	7.888
Total Dissolved Solids	mg/l	1500	137	565	325.33	206	364	282.7
BOD (3) days at 27°C	mg/l	3.0	1.29	2.9	2.31	1.45	2.85	2.22
Free Cyanide (as CN)	mg/l	0.05	0.03	0.03	0.029	0.02	0.03	0.029
Chemical Oxygen Demand (COD)	mg/l	-	12	124	31.33	6.0	28.0	16.3
Free Ammonia	mg/l	0.05	0.01	0.01	0.01	0.01	0.01	0.01

Effluent Quality Report for period from April'20 to March'21

Parameters	UOM	Standard	BOD -1 treated effluent			BOD -2 treated effluent		
			Min	Max	Avg.	Min	Max	Avg.
pH Value	-	6.0-9.0	7.1	8.9	7.8	7.3	8.4	8.0
Total Suspended Solids	mg/l	100	44	69	55	40	72	54
BOD (3) days at 27°C	mg/l	30.0	17.6	25.2	21.8	20.2	27.8	23.6
Total Cyanide (as CN)	mg/l	0.2	0.1	0.1	0.1	0.1	0.2	0.1
Chemical Oxygen Demand (COD)	mg/l	250	120	190	153	125	210	163.7
Phenol	mg/l	1.0	0.6	0.8	0.7	0.5	0.8	0.62

Parameter	UoM	Standard		ETP-1			ETP-2			ETP-3	
Farameter	UOIWI	Stanuaru	Min	Max	Avg	Min	Max	Avg	Min	Max	Avg
pH Value	-	6.0-9.0	7.6	8.1	7.9	6.8	8.3	7.7	7.1	8.1	7.6
Total	mg/l	100									
Suspended			36	61	50.2	40	63	49.8	39	90	61.8
Solids											
BOD (3)											
days at	mg/l	30	2.3	4.6	3.3	2.4	5.2	3.6	3.6	5.8	4.6
27°C											
Total											
Cyanide	mg/l	0.2	0.002	0.005	0.003	0.001	0.003	0.002	0.08	0.12	0.11
(as CN)											
Chemical											
Oxygen	ma/l	250	28	50	37.2	18	52	30.3	11	70	56.3
Demand	iiig/i	200	20	50	57.2	10	52	00.0		10	50.5
(COD)											
Phenol	mg/l	1.0	ND	ND	ND	ND	ND	ND	0.19	0.51	0.26

Pollutant Parameter	Prescribed Standard (mg/Nm ³)	Quantity discharge (kg/d)	Concentration discharge (mg/Nm ³)	Percentage of variation from prescribed standards with reasons
Particulate matter	Please Refer the	e Annexure – 1		

Point & nonpoint source emissions are major contributors in steel industries for degrading ambient air quality. Post-acquisition, Tata Steel BSL started giving special attention to improve its source emission. Completion of some major environmental improvement projects enabled Angul plant to reduce its dust load from 0.84 kg/tcs to 0.73 kg/tcs in last financial year. Technological improvements like Power supply of ESP (Electrostatic precipitator) using High frequency transformer rectifier/Micro pulse-based rectifier, revamping of old ESPs in DRI contributed a lot to improve stack emission quality. Further standardization of maintenance procedures, Spillage reduction in conveyor junction houses by installation of new technology sealing using double skirt rubber and commissioning of new dust extraction system in junction houses helped to reduce fugitive emission significantly. Moreover, as greenery always contributes for better air quality and acts as a carbon sink, TSBSL is continuously increasing its green cover throughout its all-India operations by Miyawaki method of rapid afforestation.

Details of Air Pollution Control Equipment's

Appropriate air pollution control technology has been adopted for minimizing air pollution at source itself. 28 nos. of Electrostatic precipitator, 58 nos. of bag filter and 03 nos. of scrubbers, 43 nos. of DFS with 252 nos. of nozzles, 107 nos. of gun sprinklers, cartridge filter have been installed at various departments to keep stack as well as fugitive dust emission well within the norms. Tyre mounted

rotating mix canon cum water sprinkler at RMHS and at SMS are put into operation. Three Nos. of wheel washing systems one at RMHS and other two at BFPP- 1 & 2 respectively are put in operation. Special rubberized panels have been installed in screens in place of wire mesh and the same is also planned to install in all iron ore screen. IVCs (Industrial vacuum cleaner) (both wet & dry) installation is under progress.

Tyre mounted Mix Canon at RMHS

Cartridge Filter at Lime

Martin apron seal skirt system at

Wheel washing system at RMHS

Wheel Washing System at BFPP2

Industrial Vacuum Cleaner (IVC)

Greenbelt Development:

During the financial year 2020-21 total 44271 nos. of samplings have been planted in and around the Angul Energy Limited and Tata Steel BSL Limited premises.

CAAQMS report for the period April'20 to March'21

		CAAQMS							
Pollutant	Standard	Colony	Near CRM	Near Water Complex	Near Coke Oven 2	Near Wagon Tippler			
PM 10	100	54.06	75.48	97.68	81.11	71.99			
PM 2.5	60	21.54	31.56	29.10	27.87	37.18			
SO2	80	21.30	23.19	12.54	16.57	15.60			
NOx	80	9.50	25.91	29.73	20.45	29.82			
СО	2	0.90	0.75	0.34	0.43	0.47			

<u>PART – D</u>

Hazardous Wastes (As specified under The Hazardous and Other Wastes (Management & Transboundary Movement) Rules, 2016)								
D-1: Generation from Process								
Nama	Total Q	uantity (MT)						
Ivanie	2019-20	2020-21						
1. Used Oil	212.28	289.33						
2. Waste residue containing oil	19.93	24.036						
3. Spent Resin	3.25	1.25						
4. Rejected Chemical Container	31.61	193.47						
5. Insulation Material	131.23	83.47						
6.Acid Residue	-	-						
7. Alkali Residue	15.74	17.66						
8.Oily Sludge	87.25	93.33						
9.Zinc Ash & Zinc Dross	616.41	480.85						
D-2: Generation from Pollution Control Facilities								
Nome	Total Q	uantity (MT)						
name	2019-20	2020-21						
1. BOD plant Sludge	1768.52	1563.35						
2. Decanter Tar Sludge	1105	1385						
3. ETP Sludge from CRM	711.11	872.25						
4. Flue gas cleaning residue	40110	34363.9						
	·							

<u>PART – E</u>

Solid Wastes

Total Quantity Generated

E-1: Generation from Process							
Nama	Total	Quantity (MT)					
Iname	2019-20	2020-21					
1. Char	86953	122642					
2. Bottom Ash	45583	38950.34					
3. BF Slag	1632566	1519144					
4. SMS Slag	916113	831438					
E-2: Generation from Pollution Control Facilities							
1. Fly Ash	410245	291348.06					
2. Flue Dust	40110	81789					
3. ESP, Bag filter Dust, DRI clod silo dust, Lime fines	175027	127525					
dust, FES dust	173927	137335					
4. BOF Sludge	92607	67042					
5. Mill Scale	97704	58817					
6. BF Sludge	56098	67042					

E-3: Total Quantity Recycled/Reutilized within the Unit

Name of the Waste	Total Quantity (MT)				
	2019-20	2020-21			
1.Char	86953	106543			
2.SMS Slag	372088	428571			
3. Flue Dust	40110	81789			
4. ESP, Bag filter Dust, DRI clod silo dust, Lime fines	127781	680/18			
dust, FES dust	127701	000+0			
5. Mill Scale	97704	61805			
6.BOF Sludge	14980	35125			

E-4: Total Quantity Sold

Nome of the Weste	Total	Quantity (MT)
Ivanie of the waste	2019-20	2020-21
1. BF Slag	1535615	1730873
2.SMS Slag	412872	117403
3.ESP, Bag filter Dust, DRI clod silo dust, Lime fines	_	20699
dust, FES dust	-	20099
4.BOF Sludge	-	2839
5.Mill Scale	-	984

E-5: Quantity Disposed/Stored

Nome of the Weste	Total Quantity (MT)				
Name of the waste	2019-20	2020-21			
1.Char	-	16099			
2. SMS Slag (Stored inside the plant)	503241	285464			
2. BOF Sludge (Stored inside plant to make briquette)	77627	106705			
3.ESP, Bag filter Dust, DRI clod silo dust, Lime fines		18788			
dust, FES dust	-	40700			
Fly ash of 291348.06 MT and Bottom Ash of 38950	0.34 MT generated	during 2020-21 were used			
outside the plant for reclamation of stone quarry, NH co	onstruction, cement	and bricks making.			

<u> PART – F</u>

Please specify the characterizations (in terms of composition in quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes.

F-1: Hazardous Wastes

Description	Constituent parameter	Concentration	Disposal practice		
1. Used Oil			Sold to Authorized Recycler		
2. Waste residue containing oil	Analysis rej Anne	port attached as exure - 2	Storage in MS drum under covered shed for further disposal at CHTSDF		
3. Spent Resin			Stored in MS drum. When sufficient quantity is accumulated it will be disposed at Storage Disposal Facility (CHW TSDF)		
4. BOD plant Sludge	A 1 '	1 1	Reused in Coke oven plant		
5. Decanter Tar Sludge	Analysis rej	port attached as exure - 2	Reused in Coke oven plant		
6.Alkali Residue			Stored in a Secured manner in containers and disposed to CHWTSDF site.		
7. ETP Sludge from CRM and other process.			Disposed to CHWTSDF		
9. Insulation Material	_	_			
10.Flue gas cleaning residue	Analysis rej Anne	port attached as exure - 2	Storage in designated area then internally reused.		
11. Rejected Chemical Container	_	-	Dispose/Sold to Authorized Recycler.		

F-2: Solid Wastes

Description	Constituent parameter	Concentration	Disposal practice		
1. Char	Analysis report attached as Annexure - 3 Reused in Power plant boile				
2. Bottom Ash	Analysis rer	port attached as	Supply to Bricks & cement manufacturing unit, use in		
3. Fly Ash	Anne	exure - 4	construction of NH and balance if any has been used for reclamation of abandoned stone quarries.		
4. SMS Slag	Analysis report attached as Annexure - 2		Used in road construction and sinter making.		
5. BF Slag			Sold to Cement plant (ACC & OCL)		

Solid Waste Management Practice:

In the area of circular economy, the Company has undertaken various initiatives to manage solid waste in an environment friendly, socially responsible and techno-commercially viable manner. Our waste management philosophy interprets waste as a wealth.

Our Environment Policy emphasizes our commitment towards managing wastes from our operations by adopting the principle of 4R i.e., Reduce, Reuse, Recycle and Recover, through waste avoidance, reuse and, recycling where possible and beneficial utilization and converting to wealth to minimize disposal to landfills which ultimately burden the environment.

Utilization of LD slag has increased significantly from 46% (FY 20) to 66% (FY 21). Overall Solid waste utilization has increased to 96% in FY21. Company has put various efforts to increase the LD slag utilization by installation of Metal Recovery Plant, developing market for sustainable use in Brick & Cement manufacturing,

increase in utilization of slag for making value added products. Ash utilization remains 100% in FY 21 through utilization in paver block, brick, cement and road construction. Supply of fly ash through rake to north-east market opened a promising future of Fly ash utilization. Other Solid wastes generated from the steel plant were recycled in Sinter making. To make this process more

scientific TSBSL has installed a PSW (process solid waste) mixing and screening facility in FY 21 to make more efficient use of solid waste in Sinter making.

Domestic Waste Management from township/plant:

Bio-degradable plant and colony waste is being composted by organic composter and nonbiodegradable waste is managed through incinerator.

Hazardous Waste Management Practice

4R principle is the hazardous waste management philosophy in Tata Steel BSL. TSBSL generates **15 categories** of hazardous wastes and individual management plans are prepared, well documented and dissipated among shop floor employees who are handling the waste on daily basis.

- Hazardous waste has been stored onsite in barrels under covered shed in concrete floor with Garland drains leading to sum pit.
- Total 33 nos. of hazardous waste storage shed have been constructed inside plantcomplex for storage of Used Oil drums.
- All Hazardous waste storage yards are constructed in Environmentally Sound Manner to avoid leakage and spillage of the waste material.
- The barrels are being properly marked and labeled as per Form-8 to ensure safehandling during transportation.
- The used oil barrels are sold to the authorized recyclers by maintaining all statutory guidelines.
- CRM- ETP sludge, Alkali sludge and oily sludge are sent to CHWTSDF for secure landfill in special designated container maintaining all the relevant statutory documents.
- Insulation materials (Glass Wool) are sent to CHWTSDF for secure landfill in special designated container.
- Hazardous waste like tar sludge generated from the process of Coke Oven plant is reused in the process.

Hazardous waste storage shed at BOF

Hazardous waste storage shed at HSM Water Complex

<u>PART – G</u>

Impact of pollution control measure on conservation of natural resources and cost of production									
G-1: Cost Estimation of Pollution Control									
Description Expenditure in Crores durin 2020 - 21									
	Capital cost	Recurring cost							
Water Pollution	0.67	17.89							
Air Pollution	9.20	21.29							
Solid Waste & Hazardous Waste Management	0.61	63.30							
Green belt development (Both TSBSL & AEL)	-	3.01							
Others (Housekeeping, Scientific study & analysis)	3.53	2.80							
Total	14.01	108.29							

<u> PART – H</u>

Additional measures/investment proposal for environmental protection including abatement of pollution, prevention of pollution.

- Upgradation of the existing pollution control equipment to further bring down particulate matter level.
- Improvement in water recycling facility for reducing the specific water consumption.
- Installation of decanter to recover water from sludge of primary treatment plant.
- Enhancing green coverage by creating gardens and undertaking more Miyawaki Method of Plantation in and around the complex.
- Transfer of wet quenching to dry quenching at Coke Oven-I.
- Installation of IP camera, fluoride analyzer and Mercury analyzer.
- Installation of second organic composter.

<u>PART – I</u>

Any other undertaken project for improving the quality of environment

• Upgradation of DE system

Technical study is under progress by M N Dastur to evaluate the performance of the existing DE system installed at coke route, sinter return fines route and RMHS route. Recommendation will be reviewed and suitable implemented to keep the emission well below the standard.

• Roads construction

Out of 48 kms of internal road about 39 Kms have already been concreted and rest work is under progress. Along the road's drains have also been established and roadside avenue plantation has also been carried out inside the complex.

• Installation of Organic composter

One organic composter of 750 kg/day is in operation. Organic composter of 4 to 5 ton/day is planned to install on BOO basis to compost municipal solid waste generated from plant and colony. The non-bio-degradable recyclable material will be sold to outside agencies and compost thus generated will be utilized in horticultural purpose.

• Continual Improvement in Sustainability indicators

The Company has imbibed a systematic management approach for continuous improvement in its operational performance with innovation in processes, responsible utilization of resources, adoption of new technology and learning & development.

• Carbon abatement:

Tata Steel BSL recognizes its role and responsibility in addressing the global issue of climate change and is taking various initiatives to support India's Intended Nationally Determined Contributions ('INDC') target and reduce carbon intensity at its integrated steel plant at Angul. For reducing carbon footprint, TSBSL is pursuing the implementation of innovative low carbon technologies. Due to COVID pandemic, crude steel production was less compared to FY20, nevertheless the company has managed to reduce overall CO2 emission from 12.3 million Ton in FY 20 to 11.5 million Ton in FY 21. In our pursuit of resource efficiency and cleaning the power mix, we are increasingly using waste gas and waste heat for power generation which accounted for 82% of total power generation of TSBSL in FY21. Energy consumption of DRI has also been reduced to 85 KWH/t of DRI in FY'21 from 94 kWh/t of DRI in FY'20. TSBSL has started construction work for Coke Dry quenching unit for Coke Oven -1 and commissioned 2nd PCI in BF 2 which will further enhance our energy efficiency.

• Bio-diversity management:

Our planet is facing major conservation challenges from enormous pressure of pollution, climate change, deforestation, and illegal wildlife trade. Tata Steel BSL approaches conserving biodiversity by engaging the employees and local communities through various awareness programs and workshops. To enhance company's performance in biodiversity conservation and significantly reducing its impact on ecosystem, Tata Steel BSL launched its Biodiversity Policy in 2020. The policy provides guidelines for reducing its impact with the aim of achieving "No net Loss" on biodiversity over a period of time and distancing from any acquisition of properties whose development may result in loss of critical habitat for species conservation status.

The journey of Tata Steel BSL in conservation and restoration of biodiversity in and around its operational area, is started with a well-defined biodiversity management plan which is being implemented in phases with the knowledge support of globally renewed biodiversity experts.

The key initiative taken at steel plant, Odisha:

- a) Increase in variety of plant species those attract butterflies in the existing nursery inside the plant.
- b) Development of Eco-nest for Migratory/Local Birds. 27 no. of Bird nest installed in FY 21.
- c) Site Development near water reservoir for Conservation of White horn (Ardea alba) Birds.

- d) Development of Medicinal Garden and awareness to public about its importance.
- e) Site development for conservation of Weaver Birds (Baya Chadhei).
- f) Development of butterfly garden at Gopabandhu High School, Khaliberena, Odisha
- g) Introduced 10 nos. of goose in nursery waterbodies.
- h) Undertaken maintenance & cleaning of ponds in nearby villages of Angul.

• Circular Economy

In the area of circular economy, the Company has taken various initiatives to manage solid waste in an environmentally friendly, socially responsible and techno-commercially viable manner. Utilization of LD slag and Fly ash has increased significantly from previous years. Overall Solid waste utilization has been increased up to 96% at present. Tata Steel BSL has put various efforts to increase the LD slag utilization from 28% in FY:18 to 66% in FY:21. Many initiatives have been undertaken and presently projects are in pipeline to increase the utilization up to 87% in FY'22.

• World 1st UV- Oxidation technology for Cyanide Mitigation

Tata Steel BSL has adopted cutting-edge Ultraviolet (UV) Oxidation technology to treat Cyanide in coke oven wastewater as a step towards achieving environmental excellence. It has established world's first UV Oxidation Plant in the steel industry at its plant located at Narendrapur in Dhenkanal district of Odisha with capacity to treat 80 Cubic meters of wastewater per hour for the purpose.

The conventional method of treating cyanide, one of the most toxic and potentially deadly pollutants, is called solid sludge separation technology which may lead towards cyanide toxicity by secondary means of toxic sludge decomposition

• Responsible Supply Chain:

Responsible Supply Chain is an essential element in delivering our department's vision of being the benchmark in its commitment to Sustainable Development. Tata Steel BSL's Responsible Supply Chain Policy will help in adopting the principles and communicates how we will work with our supply chain partners and sets out our expectations and minimum standards for fair business practices, health and safety, human rights, and environmental performance.

We expect our supply chain partners to comply with the provisions of our Responsible Supply Chain Policy. We expect our partners to have a similar policy for their entire supply chain. We are committed to work with our partners to implement the Policy for promoting supply chain transparency and establish long-term sustainable relationships.

It sets out our expectations and gives guidance for implementation to our immediate supply chain partners in line with the following principles:

- Fair Business Practices
- Health and Safety
- Human Rights
- **4** Environmental Protection
- Improvement in overall rail coefficient

The increase of Rail Co-efficient from 75 % to 78 % last year has compounding benefits to the supply chain. With increasing production, this increase in co- efficient means that a large amount of freight is being transported by greener means.

• Introduction of Rail-Road mover which has 30% lower fuel consumption.

Titan Locos have been introduced which are a leaner and greener means of transport for our Steel melting Shops.

• Replacing wooden saddles with steel saddles for Hot Rolled Dispatch leading to reduce and reuse of saddles.

• Increase usage of Energy efficient Trucks, Trailers, and Ships.

The total environmental benefit from the initiatives exceeds the annual plan for the reduction in CO₂e of the Department. Furthermore, the initiatives planned for the next year will help us bring down the emissions even more and enable us to exceed our annual targets.

• Introduction E- Car:

As a part of sustainable transportation six numbers of E-car have been operated.

Flag off six E-car, introduced in steel industry from FY20

• Energy saving & sustainability Projects

I. Development of marginal abatement cost curve to prioritize carbon reduction projects & prepare long term road map for reduction in carbon emission.

II. Successfully Commissioned of Coke Dry Quenching (CDQ) Plant having carbon abatement potential of 0.13 Mn tonnes per annum. The heat recovered by inert gas from hot coke is being used to produce steam. The superheated steam of around 90 ton produced from boiler of CDQ is being used for generation of power. Additionally, the improved dry coal quality produced from CDQ will help to reduce the consumption of coke in Blast Furnace's which lead to lesser energy consumption in furnaces.

III. Installed 250 TPH Gas Fired Boiler using the waste Gas produced from Coke Oven and Blast Furnaces to generate steam, which in turn is used in turbine for generation of electricity. With the completion of Gas Fired Boiler, the blast furnaces have stopped flaring of BF gas which reduced the pollution load. The coal usage in coal fired boiler for generation of electricity has been reduced, which in turn helps to improve the environmental attributes and carbon usages. The carbon reduction potential for this project is 0.4 million tons per annum.

IV. Several other carbon reduction projects like Utilization of Scrap from 4 % to 10 % at BOF steelmaking, commissioning of BOF Gas Holder, Pulverized Coke Injection (PCI) System in Blast Furnace 2 etc have been undertaken which are having total carbon abatement potential

of 0.6 Mn tonnes per annum. Specifically, in BOF steelmaking, the scrap proportion has been increased to around 10%. This addition not only provides the required heat sink for energy balance, it also replaces the CO_2 intensive hot metal. Recycling of scrap provides the solid metallic Fe units and is environmentally friendly.

V. High Density Poly Ethylene (HDPE) lined pond of capacity $50,000 \text{ m}^3$ has been created on the eastern side of Coke Oven-2. The purpose of this pond is to hold treated industrial effluent to reuse in the process when required. Apart from holding the treated effluent, the pond has also been designed to store surface run off during monsoon as a measure towards rainwater harvesting and subsequent use for industrial application.

VI. Initiatives have also been taken for use of alternate sources of Energy. TSBSL's Integrated Steel plant in Dhenkanal has produced around 120 MW power in the year FY 19 through Waste heat recovery route which was about 40% of total power consumed. Feasibility study of solar energy is in progress in all the other locations with a potential of generating 30 MW power by harnessing solar energy.

Miyawaki Method of Plantation

Plantation is being carried out along the boundary wall around 2KM in Miyawaki method under the guidance of Prof. K. Pathak, IIT, Kharagpur.

	Name of the Plant	Prescribed Standard (mg/Nm3)	Quantity Discharge (kg/d)	Concentration of discharge (mg/Nm3)	% variation from prescribed standard
	WHRB-1	50	SD	SD	-
	WHRB-2	50	SD	SD	-
	WHRB-3	50	54.64	23.93	-
	WHRB-4	50	41.32	24.91	-
	WHRB-5	50	54.42	23.52	-
	WHRB-6	50	58.04	20.65	-
	WHRB-7	50	88.69	21.44	-
WHRB	WHRB-8	50	92.73	24.49	-
	WHRB-9	50	58.51	18.59	-
	WHRB-10	50	70.59	18.64	-
	DRI de Dusting-1	100	SD	SD	-
	DRI de Dusting-2	100	116.84	20.10	-
	DRI de Dusting-3	100	68.81	11.36	-
	DRI de Dusting-4	100	137.37	18.81	-
	DRI de Dusting-5	100	106.09	15.21	-
	Sinter Plant-1 (Main ESP)	100	482.67	28.16	-
Sinter	Sinter Plant-1 (85 M ² ESP)	100	84.67	17.06	-
	Sinter Plant-1 (110 M ² ESP)	100	158.52	23.16	-
	Sinter Plant-1 (Bag Filter)	100	191.81	15.39	-
	Sinter Plant-2 Process	50	1047.66	39.91	-
	Sinter Plant-3 Process	50	1128.92	42.85	-
	Lime Plant Kiln-1	50	29.40	32.39	-
	Lime Plant Kiln-2	50	51.59	35.20	-
DRI/ WHRB	Lime Plant Kiln-3	50	46.81	34.04	-
Lime	Lime Plant Kiln-4	50	53.44	38.21	-
	Lime Plant Kiln-5	50	60.75	47.73	-
	Lime Plant Dedusting-2	100	13.84	25.67	-
Sinter	Lime Plant Dedusting-3	100	45.96	16.71	-
	Lime Plant Dedusting-4	100	35.58	22.75	-
	AFBC 33MW PP	100	SD	SD	-
	BF PP-1 (Boiler-1)	50	56.59	25.26	-
DRI/ WHRB	BF PP-1 (Boiler-2)	50	58.22	26.68	-
	BF PP-1 (Boiler-3)	50	42.68	20.74	-
	BFPP-2 Boiler-2	50	SD	31.03	-
	BFPP-2 Boiler-3	50	164.25	21.62	-
	Gas Fired Boiler 60TPH & 125 TPH	50	_	-	-

Name of the Plant		Standards (mg/Nm3	Quantity Discharge (kg/d)	Annual Average Conc. In mg/Nm3	% variation from prescribed standard
	BF-1 Cast House	ntStandards (mg/Nm3Quantity Discharge (kg/d)Annual Cor mg/ $2ast House$ 100155.6011 $2ast House$ 100111.6315 $1cck House$ 100111.6315 $ack BE-1$ 5016.9313 $2ast House$ 50149.277 $1cck House$ 50161.0714 $ack BF-2$ 5031.6313 $2 FES-1$ 100456.0311 $2 FES-2$ 100765.5024 $3 BOF$ 501238.7822 $2 Ven (Battery 1)$ 10077.0032 $2 Ven (Battery-2)$ 10074.0330 $2 Ven 2 Battery$ 50107.2337 $2 CSB-1 Bag filter$ 5078.0014 $2 tack-1$ 5020.1516	11.92	-	
Name of t	BF-1 Stock House	100	111.63	15.04	-
DE	PCI Stack BE-1	50	16.93	13.89	-
БГ	BF-2 Cast House	50	149.27	7.76	_
	BF-2 Stock House	50	161.07	14.33	-
	PCI Stack BF-2	50	31.63	13.06	-
	SMS -2 FES-1	100	456.03	11.38	-
SMS	SMS -2 FES-2	100	765.50	24.40	-
	SMS -3 BOF	50	1238.78	22.36	-
C 1	Coke Oven (Battery1)	100	77.00	32.27	_
Oven	Coke Oven (Battery-2)	100	74.03	30.24	-
Oven	Coke Oven-2 Battery	50	107.23	37.41	-
	(RMPP) CSB-1 Bag filter	50	82.82	14.34	-
KIVIPP	(RMPP) CSB-2 Bag filter	50	78.00	14.77	-
BF BF BF BF BF BF BF BF BF BF BF BF BF BF B	HSM Stack-1	50	20.15	16.37	_
пэм	HSM Stack-2	50	19.33	13.28	_

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date of Completion of Test:

Date: 03.08.2021

Name & Address of the Party:Tata Steel BSL Ltd.
At-Narendrapur, P.O.-Kusupanga
Via-Meramandali, Dist-DhenkanalSample Details:Solid Waste samples (17 Nos.)Date of Receiving:02.06.2021
07.06.2021

Method Adopted: 1. Major element analysis of Solid waste samples through wet chemical route by using

23.07.2021

Volumetric, gravimetric, photometric, nephelometric, AAS and ICP-OES techniques.
2. TCLP study of waste samples as per US-EPA method 1311 or ASTM-D5233-92. Leaching solution analysis by ICP-OES and AAS.

Detail Report: Following data tables are enclosed

- Table-1.
 Physical characteristics analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali
- Table-2. Size (Sieve) analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali
- Table-3. Chemical composition analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali
- Table-4(a)
 Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid

 Waste samples (SW1, SW2, SW3, SW4, SW5 & SW8) conducted as per US-EPA method

 1311.
- Table-4(b) Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples(SW1, SW2, SW3, SW4, SW5 & SW8); Leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).
- Table-5(a)Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid
Waste samples (SW9, SW10, SW11, SW12, SW13 & SW14) conducted as per US-EPA
method 1311.
- Table-5(b)Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples(SW9,
SW10, SW11, SW12, SW13 & SW14); Leaching studies conducted as per US-EPA method
1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

Contd....

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

- Table-6(a) Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid Waste samples (SW15, SW17, SW18, SW19 & SW20) conducted as per US-EPA method 1311.
- Table-6(b)Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples (SW15,
SW17, SW18, SW19 & SW20); Leaching studies conducted as per US-EPA method 1311
and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

08/21 (J. Das)

Principal Technical Officer Central Characterization Dept.

N.B.:- The samples are not drawn by CSIR-IMMT. Liability, if any, for CSIR/IMMT arising in connection with the testing shall be subject to ceiling of amount received by the institute from the client. The report should not be interpreted in part.

सीएसआईआर - खनिज एवं पदार्थ प्रौद्योगिकी संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-1. Physical characteristics analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali.

Sl. No.	Sample ID.	Concentration in Test Solid waste samples					
		pH	Bulk Density, (g/cc)	Dry Matter, %	Volatile Matter, %		
1	SW-1 (ETP-1 Sludge)	7.86	0.62	97.5	14.7		
2	SW-2 (ETP-2 Sludge)	8.07	0.69	98.1	12.0		
3	SW-3 (ETP-3 Sludge)	8.31	0.71	98.4	18.9		
4	SW-4 (CRM ETP Sludge)	8.45	0.65	94.5	37.8		
5	SW-5 (BOD -1 Sludge)	6.71	0.75	86.5	47.8		
6	SW-8 (BF-1 Flue Dust)	9.08	2.04	99.5	3.18		
7	SW-9 (BF-2 Flue Dust)	10.4	1.61	99.6	3.44		
8	SW-10 (BOF GCP Dust)	11.2	1.15	99.0	2.75		
9	SW-11 (DRI Cold ESP Dust)	10.9	0.76	98.1	4.50		
10	SW-12 ((DRI Wet Scrapper Dust)	9.57	0.85	97.7	4.67		
11	SW-13 (SMS Slag)	12.2	1.86	99.9	0.47		
12	SW-14 (BF Granulated Slag)	9.60	1.29	99.8	0.41		
13	SW-15 (Lime Plant De- dusting Dust)	12.5	0.78	99.7	14.3		
14	SW-17 (Mill Scale)	8.61	2.89	99.9	0.09		
15	SW-18 (SMS-II FES Dust)	12.6	1.41	99.8	4.24		
16	SW-19 (BF-1 GCP Dust)	9.26	1.02	99.5	4.16		
17	SW-20 (BF-2 GCP Dust)	9.47	1.25	99.2	5.17		

(J. Das)

सीएसआइआर - खनिज एवं पदार्थ प्रौद्योगिको संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भूवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

SI.	Sample				Seiv	e Fractions		V	
140.		+2 mm	-2+1 mm	-1+500 micron	-500+250 micron	-250+150 micron	-150+75 micron	-75+45 micron	-45 micron
1	SW-1	73.95	9.31	5.62	3.50	0.80	1.32	1.42	4.08
2	SW-2	62.59	16.21	8.68	4.09	0.42	0.38	0.90	6 74
3	SW-3	36.28	11.91	10.09	9.46	6.25	6.67	11.89	7.46
4	SW-4	88.51	6.70	2.84	0.93	0.52	0.50	0	0
5	SW-5	83.54	11.30	3.49	0.42	0.87	0.16	0.10	0.11
6	SW-8	6.05	3.02	3.77	3.75	4.78	11.69	13 44	53.48
7	SW-9	0	0.09	0.25	0.51	1.91	29.37	56.56	11 30
8	SW-10	33.52	15.92	15.29	11.98	5.10	6.67	8.29	3 22
9	SW-11	6.40	7.13	4.61	5.65	3.44	14.33	40.13	18 31
10	SW-12	5.12	4.75	7.91	10.29	11.28	23.15	17.61	19.89
11	SW-13	57.97	9.22	6.74	4.73	3.00	5 44	3 53	938
12	SW-14	2.31	12.91	43.91	16.23	4.56	6.46	5.05	8.57
13	SW 15	0.93	0.63	0.96	1.47	2.50	1533	52 18	26.00
14	SW-17	39.15	13.71	12.83	16.48	8.68	6.29	2.09	0.77
15	SW-18	0.49	1.06	2.55	7.33	47.34	2135	12.43	7.46
16	SW-19	45.08	3.33	2.71	3.70	7.08	17.62	10.22	10.26
17	SW-20	29.96	12.53	5.22	3.78	7.02	17.35	13.72	10.20

Table-2. Size (Sieve) analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali

N. B.: SW1-ETP-1 Sludge, SW2-ETP-2 Sludge, SW3-ETP-3 Sludge, SW4-CRM ETP Sludge, SW5-BOD-1 Sludge, SW8-BF-1 Flue Dust, SW9-BF-2 Flue Dust, SW10-BOF GCP Dust, SW11-DRI Cold ESP Dust, SW12-DRI Wet Scrapper Dust, SW13-SMS Slag, SW14-BF Granulated Slag, SW15-Lime Plant De-dusting Dust, SW17-Mill Scale, SW18-SMS-II FES Dust, SW19-BF-1 GCP Dust & SW20-BF-2 GCP Dust

(J. Das)

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-3. Chemical composition analysis of Solid Waste samples of Tata Steel BSL Limited, Meramandali.

SI.	Sample	-	Concentration in Test Solid waste samples, %													
No.	Ids.	SiO ₂	Al ₂ O ₃	Fe(T)	TiO ₂	MnO	CaO	MgO	Na ₂ O	K ₂ O	P2O5	SO3	C	Cl	LOI	
1	SW-1	39.21	23.32	10.3	0.36	0.049	0.78	1.21	0.41	1.65	0.06	0.28	3.51	0.23	16.28	
2	SW-2	37.91	19.30	12.5	0.94	0.085	5.07	1.40	0.65	1.24	0.16	0.07	6.02	0.29	16.46	
3	SW-3	9.07	4.01	5.11	0.21	0.038	3.16	0.94	0.40	0.69	0.001	0.85	56.0	0.16	73.22	
4	SW-4	2.40	1.15	3.72	0.03	0.10	21.81	2.54	1.22	0.52	0.45	0.17	17.5	1.13	42.75	
5	SW-5	1.29	2.02	16.2	0.19	0.021	0.69	0.62	1.29	0.65	0.001	7.70	30.6	0.48	75.98	
6	SW-8	4.17	1.88	59.15	0.10	0.093	2.09	0.58	1.47	1.02	0.001	0.82	2.12	0.40	3.18	
7	SW-9	4.18	1.79	57.7	0.09	0.056	2.28	0.74	1.13	1.37	0.001	1.78	10.24	0.13	11.4	
8	SW-10	4.32	1.78	53.1	0.12	0.095	12.45	4.02	1.16	0.97	0.001	0.31	0.85	0.075	2.75	
9	SW-11	24.28	12.61	10.98	0.56	0.039	5.36	2.32	1.29	1.16	0.35	2.49	33.4	0.09	35.57	
10	SW-12	12.76	7.96	22.74	0.39	0.025	2.60	0.71	1.19	0.99	0.20	0.42	30.3	0.03	46.21	
11	SW-13	13.42	1.78	26.7	0.84	0.022	45.22	10.80	1.58	0.88	1.20	0.20	0.07	0.27	0.52	
12	SW-14	32.99	15.58	1.10	0.71	0.065	31.77	9.14	1.55	1.34	0.001	1.61	0.24	0.14	0.61	
13	SW 15	2.41	1.12	2.68	0.10	0.066	45.63	12.8	3.01	0.89	0.03	0.26	5.01	0.58	23.15	
14	SW-17	0.09	0.32	65.4	0.01	0.012	0.20	0.99	1.33	0.74	0.001	0.03	0.13	0.05	2.47	
15	SW-18	1.94	0.96	54.7	0.08	0.011	11.51	3.38	1.81	1.87	0.001	1.28	1.50	2.68	4.24	
16	SW-19	10.84	3.21	32.9	0.17	0.046	2.74	1.31	1.36	0.93	0.001	1.01	27.7	0.31	31.6	
17	SW-20	14.65	1.94	29.3	0.15	0.049	3.44	1.45	1.33	0.87	0.001	1.46	30.7	0.45	35.71	

N. B.: SW1-ETP-1 Sludge, SW2-ETP-2 Sludge, SW3-ETP-3 Sludge, SW4-CRM ETP Sludge, SW5-BOD-1 Sludge, SW8-BF-1 Flue Dust, SW9-BF-2 Flue Dust, SW10-BOF GCP Dust, SW11-DRI Cold ESP Dust, SW12-DRI Wet Scrapper Dust, SW13-SMS Slag, SW14-BF Granulated Slag, SW15-Lime Plant De-dusting Dust, SW17-Mill Scale, SW18-SMS-II FES Dust, SW19-BF-1 GCP Dust & SW20-BF-2 GCP Dust

(J. Das)

सीएसआईआर - खनिज एवं पदार्थ प्रौद्योगिकी संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भूवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-4(a). Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid Waste samples conducted as per US-EPA method 1311.

SI.	TCLP study	Variable Data								
No.	Variables	SW 1	SW 2	SW3	SW 4	SW 5	SW 8			
1	TCLP study method		US-EPA Method-1311							
2	Sample type	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm			
3	Sample particle size taken for leaching	Original sample	Original sample	Original sample	Original sample	Original sample	Original sample			
4	Initial pH of samples	7.86	8.07	8.31	8.45	6.71	9.08			
5	pH after HCl + heat	after HCl + 3.01 5.69		6.82	7.15	4.16	3.67			
6	Extraction fluid used	d Extraction Extraction Extraction Extraction fluid -1 fluid -2 fluid -2 fluid		Extraction fluid -2	Extraction fluid -1	Extraction				
7	pH of Extraction fluid	4.91	2.88	2.88	2.88	4.91	4.91			
8	Sample taken for leaching, gm			50)					
9	Volume of extraction fluid used, ml		5	100	00					
10	Liquid/solid ratio			20:	1		Mar and a state			
1	Head space			10	%					
12	Extraction Temperature °C			28						
13	Extraction Time, hour			18						
14	Filter		GI	ass micro fiber	Whatman GE/	-				
15	Washing of filters		W	ith dil. HNO3an	d distilled wate	r				
16	pH of recovered extraction fluid	4.75	4.47	4.46	4.52	4.65	4.78			
		le contra de la co	THE PARTY			Que	and the second			

सीएसआइआर - खनिज एवं पदार्थ प्रौद्योगिकी संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भुवनेश्वर-751013, ओड़िशा, भारत

JTE OF MINERALS & MATERIALS TECHNOLOGY CSIR - INS

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-4(b). Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples; leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

SI. No.	Component	Concer Solid V	itrations i Vaste test	n TCLP o samples (1	Concentrations in TCLP or WET* leaching solutions of Solid Waste test samples (mg/L)										
		SW1	SW2	SW3	SW4	SW5	SW8	US-EPA and California Code of Regulations (mg/L)							
1	Hg	0.002	0.004	0.003	0.002	0.002	0.004	0.2							
2	As	0.019	0.037	0.032	0.010	0.015	0.001	5.0							
3	Se	0.047	0.067	0.056	0.036	0.169	0.011	1.0							
4	Sb*	0.044	0.039	0.045	1.13	0.001	0.11	15.0							
5	Ba	0.37	1.39	1.16	0.08	0.13	0.07	100.0							
6	Cd	0.002	0.002	0.008	0.001	0.001	0.001	1.0							
7	Cr	0.019	0.018	0.026	0.513	0.023	0.025	5.0							
8	Pb	0.021	0.027	0.126	0.021	0.025	0.013	5.0							
9	Mn	0.29	5.04	3.66	1.72	0.57	2.12	10.0							
10	Ag	0.001	0.001	0.001	0.003	0.002	0.003	5.0							
11	Co*	0.21	0.18	0.15	0.21	0.19	0.21	80.0							
12	Cu*	0.53	0.02	9.6	0.04	12.3	0.05	25.0							
13	Mo*	0.071	0.074	0.052	0.175	0.002	0.008	350							
14	Ni*	0.27	0.22	0.25	1.04	0.49	0.24	20.0							
15	V*	1.07	1.32	0.46	0.23	0.001	0.74	24.0							
16	Zn*	2.62	1.05	3.39	2.33	0.73	2.86	250							
17	F-*	0.67	1.03	1.21	2.69	38.6	19.5	180							

Remark: The TCLP and WET leaching solution analyses of Solid Waste samples reveal that trace element concentrations are much below the Waste constituent concentration limits.

Principal Technical Officer Central Characterization Dept.

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

 Table-5(a).
 Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid Waste samples conducted as per US-EPA method 1311.

SI.	TCLP study	n*		Varial	ble Data		
No.	Variables	SW9	SW10	SW11	SW12	SW13	SW14
1	TCLP study method			US-EPA N	1ethod-1311		
2	Sample type	Dust and Gravels, Particle size < 8 mm					
3	Sample particle size taken for leaching	Original sample	Original sample	Original sample	Original sample	Original sample	Original sample
4	Initial pH of samples	10.3	11.2	10.9	9.57	12.2	9.60
5	pH after HCl + heat	3.34	5.61	9.64	8.13	11.9	3.81
6	Extraction fluid used	Extraction fluid -1	Extraction fluid -2	Extraction fluid -2	Extraction fluid -2	Extraction	Extraction
7	pH of Extraction fluid	4.91	2.88	2.88 2.88		2.88	4.91
8	Sample taken for leaching, gm			5	0		
9	Volume of extraction fluid used, ml		40 H)	10	00		
10	Liquid/solid ratio			20	:1		
11	Head space			10	%		
12	Extraction Temperature °C			2	8		
13	Extraction Time, hour			1	8	and a first second	
14	Filter		GI	ass micro fiber	Whatman GE/	C	
15	Washing of filters		W	ith dil. HNO2ar	d distilled wat	e ar	
16	pH of recovered extraction fluid	4.95	5.09	5.04	4.82	4.54	4.55
	exaction nuid					0	

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-5(b). Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples; leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

SI. No.	Component	Concen Waste t	trations in ' est samples	TCLP or V (mg/L)	VET* leach	ing solutio	ns of Solid	Waste constituents concentration
		SW9	SW10	SW11	SW12	SW13	SW14	Imits of TCLP or STLC. US-EPA and California Code of Regulations (mg/L)
1	Hg	0.002	0.004	0.004	0.003	0.005	0.001	0.2
2	As	0.002	0.006	0.002	0.029	0.003	0.023	5.0
3	Se	0.049	0.011	0.002	0.063	0.052	0.051	1.0
4	Sb*	0.10	0.11	0.07	0.04	0.04	0.05	15.0
5	Ba	0.38	0.06	0.88	1.02	0.05	0.29	100.0
6	Cd	0.001	0.001	0.001	0.001	0.001	0.001	1.0
7	Cr	0.024	0.016	0.027	0.030	0.031	0.023	5.0
8	Pb	1.14	0.011	0.003	0.024	0.015	0.022	5.0
9	Mn	1.96	0.07	2.58	1.66	3.04	0.39	10.0
10	Ag	0.003	0.001	0.003	0.001	0.002	0.001	5.0
11	Co*	0.21	0.13	0.22	0.19	0.16	0.17	80.0
12	Cu*	0.04	0.03	0.03	0.16	0.04	0.02	25.0
13	Mo*	0.024	0.01	0.001	0.01	0.001	0.001	350
14	Ni*	0.18	0.06	0.07	0.21	0.15	0.18	20.0
15	V*	0.79	0.36	0.23	0.14	1.72	0.16	24.0
16	Zn*	4.01	2.54	0.14	0.42	0.05	1.38	250
17	F-*	18.0	0.07	2.07	1.33	0.16	7.74	180

Remark: Remark: The TCLP and WET leaching solution analyses of Solid Waste samples reveal that trace element concentrations are much below the Waste constituent concentration limits.

सीएसआइआर - खनिज एवं पदार्थ प्रौद्योगिकी संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-6(a). Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Solid Waste samples conducted as per US-EPA method 1311.

SI. No.	TCLP study	Variable Data										
SI. No. 1 2 3 4 5 6 7 8 9 10	Variables	SW15	SW17	SW18	SW19	SW20						
1	TCLP study method		US	-EPA Method-	1311							
2	Sample type	Dust and Gravels, Particle size < 8 mm	Dust and Gravels, Particle size < 8 mm									
3	Sample particle size taken for leaching	Original sample	Original sample	Original sample	Original sample	Original						
4	Initial pH of samples	12.5	8.61	12.5	9.26	9.47						
5	pH after HCl + heat	12.3	1.71	12.2	3.02	6.32						
6	Extraction fluid used	Extraction fluid -2	Extraction fluid -1	Extraction fluid -2	Extraction fluid -1	Extraction fluid -2						
7	pH of Extraction fluids	2.88	4.91	2.88	4.91	2.88						
8	Sample taken for leaching, gm			50								
9	Volume of extraction fluid used, ml			1000	1. <u>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</u>							
10	Liquid/solid ratio			20:1		And and a little states of the						
11	Head space			10 %	-	and the second						
12	Extraction Temperature °C			28								
13	Extraction Time, hour		-	18								
14	Filter		Glass mic	ro fiber. Whatn	nan GE/C							
15	Washing of filters											
16	pH of recovered extraction fluid	8.21	4.64	7.85	4.57	4.60						

(J. Das)

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013. ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/08/2021

Date: 03.08.2021

Table-6(b). Trace element analysis of TCLP or WET Procedure solutions of Solid waste samples; leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

SI. No.	Component	Concent solutions	rations in To of Solid Wa	CLP or Wi ste test sam	Concentrations in TCLP or WET* leaching solutions of Solid Waste test samples (mg/L)									
		SW15	SW17	SW18	SW19	SW20	and California Code of Regulations (mg/L)							
1	Hg	0.002	0.004	0.002	0.003	0.002	0.2							
2 .	As	0.018	0.018	0.026	0.018	0.003	5.0							
3	Se	0.055	0.054	0.181	0.057	0.019	1.0							
4	Sb*	0.014	0.079	0.070	0.063	0.015	15.0							
5	Ba	0.35	0.16	0.22	0.17	0.59	100.0							
6	Cd	0.001	0.001	0.002	0.080	0.030	1.0							
7	Cr	0.057	0.021	0.038	0.022	0.027	5.0							
8	Pb	0.025	0.019	0.021	21.5	22.4	5.0							
9	Mn	0.02	0.27	0.12	0.39	0.97	10.0							
10	Ag	0.001	0.001	0.005	0.002	0.001	5.0							
11	Co*	0.16	0.17	0.17	0.19	0.19	80.0							
12	Cu*	0.07	0.02	0.14	0.19	0.01	25.0							
13	Mo*	0.014	0.057	0.067	0.021	0.039	350							
14	Ni*	0.08	0.27	0.10	0.18	0.14	20.0							
15	V*	0.01	0.06	0.75	0.77	0.59	24.0							
16	Zn*	0.03	0.18	2.06	3.87	4.98	250							
17	F-*	19.7	0.61	18.8	9.57	17.8	180							

Remark: Remark: The TCLP and WET leaching solution analyses of Solid Waste samples reveal that trace element concentrations are much below the Waste constituent concentration limits.

ORISSA WASTE MANAGEMENT PROJECT (A division of Ramky Enviro Engineers Ltd.) Plot No 420/648/1, Vill: Kanchichuan Po: Mangalpur, Via- Sukinda, Dist-Jajpur Odisha, PIN-755018 Phone No.: 9178458227/9937026836 Email: <u>laboratoryowmp@ramky.com</u> Website: www.ramky.com

To Tata Steel BSL Ltd. At- Narendrapur, Po- Kasupanga Via- Meramandali Dist- Dhenkanal

We are here with enclosing the Comprehensive analysis report of Solid Waste Sample -: Waste Containing Oil/ Thinner, received on Date: 04.05.2020. The disposal method for the above sample is Direct Incineration. We are also enclosing the invoice for analysis.

The disposal method is purely based on the characteristics of the sample sent to us. When the waste will be sent to us it will be analyzed and if the characteristics change the disposal method may change.

Please send us your suggestions for improving laboratory services by filling customer Feedback form attached herewith.

Thanking you for your business. Please Contact us again if we can be of any service in the future. Our fullest Co-Operation and best service assured always.

Yours faithfully For Orissa Waste Management Project (A division of Ramky Enviro Engineers Ltd)

Authorized Signatory (Soumya Roy)

Site Address: Plot No 420/648/1, Vill: Kanchichnan, Po: Mangalpur, Via-Sukinda, Dist-Jajpur, Odisha, E-mail: laboratoryow.mp@ranky.com

ORISSA WASTE MANAGEMENT PROJECT (A division of Ramky Enviro Engineers Ltd.) Plot No 420/648/1, Vill: Kanchichuan Po: Mangalpur, Via- Sukinda, Dist-Jajpur Odisha, PIN-755018 Phone No.: 9178458227/9937026836 Email: <u>laboratoryowmp@ramky.com</u> Website: www.ramky.com

Test Report No: OWMP/COM/CA-256-020-Section-1

Name and address of the client

Tata Steel BSL Ltd. At- Narendrapur, Po- Kasupanga Via- Meramandali Dist- Dhenkanal

Report Date	:13.07.2020	Sample Condition : Sample received in Polythene Cove
Analysis Completion Date	: 30.05.2020	Sampling Procedure : NA
Analysis Starting Date	: 18.05.2020	Sample registration no : OWMP/COM/CA-256-020
Sampling Date	: 02.05.2020	Sample description/Code: Waste Containing Oil/ Thinner
Sample received Date	: 04.05.2020	Sample Collected by : REEL
Sub-Contracting of Tests	:NA	
Physical Observations:		

Parameter Result Physical State Liquid Color Yellowish Texture Liquid Odour Oily Is there any violent chemical change (in air) (Normally unstable) (Yes/No) NO Reacts violent with water (Yes/No) NO Generating of toxic fumes with water/acid/basic (Yes/No) NO Forms potentially explosive mixture with water (Yes/No) NO Explosion when subjected to a strong initiating force (Yes/No) NO Explosion at normal temperature & pressure (Yes/No) NO

TEST RESULT

S.NO	PARAMETER	Unit	Method	Result	Std. for Secure Landfill Disposal
1	Paint Filter Liquid Test	-	SW-846 9095A	NA	Pass
2	Bulk Density	gm/cc	ASTM D6683-19	1.23	
3	pH at 22°C	-	USEPA 1998, SW - 846; 9045C	4.84	4 to 12
4	Flash Point	°C	USEPA 1998, SW - 846: 1020A	>60°C	>60°C
5	Loss On Drying at 105 °C	%	APHA 23rd Edition 2017; 2540	33.01	

Page 1 of 4

Site Address: Plot No 420/648/1, Vill: Kanchichuan, Po: Mangalpur, Via-Sukinda, Dist-Jajpur, Odisha. E-mail: laboratoryownp@ramky.com

Test Report No: OWMP/COM/ CA-256-020-(Section 1)

PARAMETER	Unit	Method	Result	Std. for Secure Landfill Disposal
Loss on Ignition at 550°C	%	APHA 23 rd Edition, 2017; 2540	96.34	<= 20% Non- biodegradable<= 5%: Biodegradable
Calorific Value	cal/gm	IS: 1350(Part-II)-1970	8269	<2500
Water Soluble Inorganics (In WLT Extract)	%(w/w)	APHA 2540 E	1.02	<20.0
Oil & Grease	%(w/w)	Std Methods: 5520E	58.54	<4.0
(Ao infrictance cadded to to)	mg/L	APHA 4500 CN E	0.10	<2.0
Reactive Sulfide	mg/Kg	USEPA 1998,SW - 846 9034	ND	<500
Total Phenols(WLT)	mg/L	APHA-5530B&D	ND	<100.0
Ammonia as N (WLT)	mg/L	APHA-4500NH ₃ B,C	<5.0	<1000.0
Eluorido as E-(WLT)	mg/L	APHA 23rd Edition; 4500 F-D	1.6	<50.0
Fluoride as F(WL1) In Nitrate Nitrogen as m N(MIT) m		APHA 4500 NO3- B	ND	<30.0
Automic as As (Total)	mg/Kg	USEPA 1998, SW846; 7061 A	ND	1
Arsenic as As (WLT)	mg/L	USEPA 1998, APHA-3500 As B, SW846; 7061 A	ND	<1.0
Codmium (Total)	mø/Kg	USEPA 1998, SW846 - 7130	ND	
Cadmium (M/LT)	mg/L	APHA 23rd Edition,3111 B	ND	<0.2
Cadmium (TCLP)	mg/L	USEPA 1998, SW-846; 7130	ND	<1.0
Tatal Chromium (Total)	mg/Kg	USEPA 1998, SW846 - 7190	5.33	
Total Chromium (TCLP)	mg/L	USEPA 1998, SW846 - 7190	NA	<5.0
Chromium(WLT)	mg/L	APHA 23 rd Edition 2017: 3500 Cr B	NA	
Hexavalent Chromium(WLT)	mg/L	APHA 23 rd Edition 2017: 3500 Cr B	NA	<0.5
Lond (Total)	mø/Kø	USEPA 1998, SW846 - 7420	7.78	
Lead (TCLP)	mg/L	USEPA 1998, SW846 - 7420	NA	<5.0
Lead (ICLI)	mg/L	APHA 23rd Edition, 3111 B	NA	<2.0
Nickel (Total)	mg/Kg	USEPA 1998, SW846 - 7520	2.45	
Nickel (WLT)	mg/1.	APHA 23rd Edition, 3111 B	NA	<3.0
Zing (Total)	mo/Ko	USEPA 1998, SW846 - 7950	ND	
	mg/L	APHA 23rd Edition, 3111 B	NA	<10
Cappar (Total)	mg/Kg	USEPA 1998, SW846 - 7210	2.02	
Copper (IVIII)	mg/L	APHA 23rd Edition, 3111 B	NA	<10
	PARAMETER Loss on Ignition at 550°C Calorific Value Water Soluble Inorganics (In WLT Extract) Oil & Grease (AS n-Hexane extractable) Cyanide (WLT) Reactive Sulfide Total Phenols(WLT) Ammonia as N (WLT) Fluoride as F-(WLT) Nitrate Nitrogen as N(WLT) Arsenic as As (Total) Arsenic as As (Total) Arsenic as As (WLT) Cadmium (Total) Cadmium (Total) Cadmium (TCLP) Total Chromium (Total) Total Chromium (Total) Total Chromium (TCLP) Chromium(WLT) Hexavalent Chromium(WLT) Lead (TCLP) Lead (TCLP) Lead (TCLP) Lead (WLT) Nickel (Total) Nickel (WLT) Zinc (Total) Zinc (Total) Zinc (Total) Commention Commention Commention Commention Arsenic Astronoments Arsenic Astronomen	PARAMETERUnitLoss on Ignition at 550°C%Calorific Valuecal/gmWater Soluble Inorganics (In WLT Extract)%(w/w)Oil & Grease (AS n-Hexane extractable)%(w/w)Cyanide (WLT)mg/LReactive Sulfidemg/KgTotal Phenols(WLT)mg/LAmmonia as N (WLT)mg/LFluoride as F-(WLT)mg/LNitrate Nitrogen as N(WLT)mg/LArsenic as As (Total)mg/KgCadmium (Total)mg/KgCadmium (Total)mg/LTotal Chromium (Total)mg/LTotal Chromium (Total)mg/LChromium(WLT)mg/LLotal Chromium (Total)mg/LLotal Chromium (Total)mg/LNexavalent Chromium(WLT)mg/LLead (Total)mg/LNickel (WLT)mg/LNickel (WLT)mg/LNickel (WLT)mg/LNickel (WLT)mg/LNickel (WLT)mg/LZinc (Total)mg/KgNickel (WLT)mg/LZinc (WLT)mg/LCopper (Total)mg/KgCopper (Total)mg/KgConser(Aut T)mg/Kg	PARAMETERUnitMethodLoss on Ignition at 550°C%APHA 23rd Edition, 2017; 2540Calorific Valuecal/gmIS: 1350(Part-II)-1970Water Soluble Inorganics (In WLT Extract)%(w/w)APHA 2540 EOil & Grease (AS n-Hexane extractable)%(w/w)Std Methods: 5520ECyanide (WLT)mg/LAPHA 4500 CN EReactive Sulfidemg/KgUSEPA 1998,SW - 846 9034Total Phenols(WLT)mg/LAPHA 4500NH3B,CAmmonia as N (WLT)mg/LAPHA-4500NH3B,CAmmonia as N (WLT)mg/LAPHA 4500 NO3- BN(WLT)mg/LAPHA 4500 NO3- BN(WLT)mg/LAPHA 4500 NO3- BN(WLT)mg/LAPHA 4500 NO3- BN(WLT)mg/LUSEPA 1998, SW846 - 7061 AArsenic as As (Total)mg/KgUSEPA 1998, SW846 - 7130Cadmium (Total)mg/LUSEPA 1998, SW846 - 7130Cadmium (TCLP)mg/LUSEPA 1998, SW846 - 7190Total Chromium (Total)mg/KgUSEPA 1998, SW846 - 7190Total Chromium (TCLP)mg/LCr BHexavalent Chromium(WLT)mg/LAPHA 23rd Edition 2017: 3500 Cr BLead (Total)mg/LAPHA 23rd Edition 3111 BNickel (Total)mg/LAPHA 23rd Edition, 3111 BNickel (Total)mg/LAPHA 23rd Edition, 3111 BNickel (WLT)mg/LAPHA 23rd Edition, 3111 BNickel (WLT)mg/LAPHA 23rd Edition, 3111 BNickel (WLT)mg/LAPHA 23rd Edition, 3111 BNickel (WLT) </td <td>PARAMETERUnitMethodResultLoss on Ignition at 550°C%APHA 23rd Edition, 2017; 254096.34Calorific Valuecal/gmIS: 1350(Part-II)-19708269Water Soluble Inorganics (In WLT Extract)%(w/w)APHA 2540 E1.02Oil & Grease (AS n-Hexane extractable)%(w/w)Std Methods: 5520E58.54Cyanide (WLT)mg/LAPHA 4500 CN E0.10Reactive Sulfidemg/KgUSEPA 1998,5W - 846 9034NDTotal Phenols(WLT)mg/LAPHA-4500NH3B,C<5.0</td> Fluoride as F-(WLT)mg/LAPHA-4500NH3B,C<5.0	PARAMETERUnitMethodResultLoss on Ignition at 550°C%APHA 23 rd Edition, 2017; 254096.34Calorific Valuecal/gmIS: 1350(Part-II)-19708269Water Soluble Inorganics (In WLT Extract)%(w/w)APHA 2540 E1.02Oil & Grease (AS n-Hexane extractable)%(w/w)Std Methods: 5520E58.54Cyanide (WLT)mg/LAPHA 4500 CN E0.10Reactive Sulfidemg/KgUSEPA 1998,5W - 846 9034NDTotal Phenols(WLT)mg/LAPHA-4500NH3B,C<5.0

for Pranas

Checked by (Nihar Ranjan Lenka)

Page 2 of 4

Site Address: Plot No 420/648/1, Vill: Kanchichuan, Po: Mangalpur, Via-Sukinda, Dist-Jajpur, Odisha. E-mail: laboratoryownp@ramky.com

S.NO	PARAMETER	Unit	Method	Result	Std. for Secure Landfill Disposal
1	Mercury as Hg (Total)	mg/Kg	SW-846 7471A	NA	
2	Mercury as Hg (TCLP)	mg/L	SW-846 7470A	NA	< 0.2
3	Mercury as Hg (WLT)	mg/L	SW-846 7470A	NA	<0.1
4	Total Fluoride as F-	%	SW 846	NA	24 49 40
5	Chlorides as Cl - in 10% Solution	mg/L	APHA (Part 4500-Cl ⁻ :B)	NA	
6	Total Nitrogen as N	%	CHNS	NA	
7	Total Carbon as C	%	CHNS	NA	
8	Total Hydrogen as H	%	CHNS	NA	
9	Total Sulfur as S	%	CHNS	NA	177
10	Chloroform	mg/L	GC-MS	ND	6.0 mg/L (TCLP)
11	Carbon tetra chloride	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
12	Benzene	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
13	Chloro Benzene	mg/L	GC-MS	ND	100.0 g/L(TCLP)
14	Cresols	mg/L	GC-MS	ND	200.0 g/L(TCLP)
15	1,4 - Dichloro Benzene	mg/L	GC-MS	ND	7.5 mg/L (TCLP)
16	1,2 – Dichloro Ethane	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
17	Pyridine	mg/L	GC-MS	ND	5.0 mg/L (TCLP)
18	Ethyl Methyl Ketone	mg/L	GC-MS	ND	200.0 g/L(TCLP)
19	Nitro Benzene	mg/L	GC-MS	ND	2.0 mg/L (TCLP)
20	Tetrachloro Ethylene	mg/L	GC-MS	ND	0.7 mg/L (TCLP)
21	Trichloro Ethylene	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
22	1,1 - Dichloroethylene	mg/L	GC-MS	ND	0.7 mg/L (TCLP)
23	2,4 - Dinitrotoluene	mg/L	GC-MS	ND	0.1 mg/L (TCLP)
24	Endrin	mg/L	GC-MS	ND	0.02 mg/L (TCLP)
25	Heptachlor(and its epaoxide)	mg/L	GC-MS	ND	0.008 g/L(TCLP)
26	Hexachlorobenzene	mg/L	GC-MS	ND	0.13 mg/L (TCLP)
27	Hexachlorobutadiene	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
28	Hexachloroethane	mg/L	GC-MS	ND	3.0 mg/L (TCLP)
29	Lindane	mg/L	GC-MS	ND	0.4 mg/L (TCLP)
30	Methoxychlor	mg/L	GC-MS	ND	10.0 mg/L (TCLP)
31	Pentachlorphenol	mg/L	GC-MS	ND	100.0 g/L(TCLP)
32	Toxaphene	mg/L	GC-MS	ND	0.5 mg/L (TCLP)
33	2,4,5 - Tri Chlorophenol	mg/L	GC-MS	ND	400.0 g/L(TCLP)
34	2,4,6 - Trichlorophenol	mg/L	GC-MS	ND	2.0 mg/L (TCLP)
35	2,4,5 - TP (Silvex)	mg/L	GC-MS	ND	1.0 mg/L (TCLP)
36	Vinyl Chloride	mg/L	GC-MS	ND	0.2 mg/L(TCLP)
37	2,4 - D	mg/L	GC-MS	ND	10.0 mg/L (TCLP)
38	Chlordane	ma/I	CONFIC	ND	0.02 mg/l (TCLP)

Test Report No: OWMP/COM/ CA-256-020-(Section 2)

for, Pranal Checked by (Nihar Ranjan Lenka)

Site Address: Plot No 420/648/1, Vill: Kanchichuan, Po: Mangalpur, Via-Sukinda, Dist-Jajpur, Odisha. E-mail: laboratoryownp@ramky.com

Test Report No: OWMP/COM/CA-256-020

Name and address of the client:

Tata Steel BSL Ltd. At- Narendrapur, Po- Kasupanga Via- Meramandali Dist- Dhenkanal

ABBREVIATIONS:

ORISSA WASTE MANAGEMENT PROJECT (A division of Ramky Enviro Engineers Ltd.) Plot No 420/648/1, Vill: Kanchichuan Po: Mangalpur, Via- Sukinda, Dist-Jajpur Odisha, PIN-755018 Phone No.: 9178458227/9937026836 Email: <u>laboratoryowmp@ramky.com</u> Website: www.ramky.com

CPCB	-	Central Pollution Control Board
OWMP	-	Orissa Waste Management Project
SW 846	-	Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, USEPA, May 1997
Std. Methods	-	Standard Methods for the Examination of Water & Wastewater, APHA 23rd Edition, 2017
TCLP	-	Toxicity Characteristic Leaching Procedure
WLT	-	Water Leaching Testing
LOD	-	Loss on Drying
LOI	-	Loss on Ignition
NA	-	Not Applicable
ND	-	Not Detected
BDL		Below Detectable Limit

TERMS & CONDITIONS:

1. Reports pertained only to the submitted sample.

- 2. Test reports shall not be reproduced except in full, without written approval of the OWMP laboratory.
- 3. In the absence of specific request from the customer, OWMP follows National/International standards specifications for conducting the tests. Alternatively, in the absence of these methods, OWMP shall follow the operating procedures developed OWMP.
- 4. The laboratory, normally will not offer any opinion/advise or recommendation with respect to the suitability or otherwise of the sample for any application or use. Conformities to a specification or Act will be mentioned as per the Act/specification, if required.
- 5. Under no circumstances OWMP accepts any liability or loss or damage caused by use or misuse of the rest report. Liability is limited to the testing fee charged, in case of proven negligence by the laboratory.
- 6. Client may visit (if desired) our laboratory to witness the related tests.
- 7. This test report is valid for two years from the date of issue of report, if there is no change in processes, raw materials etc.

Yours faithfully For Orissa Waste Management Project (A division of Ramky Enviro Engineers Ltd)

DANG Authorized Signatory (Soumya Roy)

Page 4 of 4

Site Address: Plot No 420/648/1, Vill: Kanchichuan, Po: Mangalpur, Via-Sukinda, Dist-Jajpur, Odisha. E-mail: laboratoryawnm@ramky.com

National Institute of Technology Rourkela-769008, Odisha

12. Name of the sample: DRI char Analysis type: Composition and trace element detection Table 12(a). Compositional analysis

Compound name	SiO1	Al ₂ O ₃	Fe	TiO ₂	MnO	CaO	MgO	Na ₂ O	K ₂ O	P ₂ O ₅	SO3	LOI
Wt %	40.3	2.56	9.54	2.38	0.26	9,23	2.64	0.54	0.87	1.67	0,56	28

Table 12(b). Trace clemental analysis

Element name	РЬ	Cđ	Cu	As	Ni	Co	Cr	Zn	Ag	Sb	Мо	۷	Hg	Se	В	Ba
Wt%	0.00 6	0.00 8	0.048	0.02 4	0.05 8	0.037	0.067	0.075	0.001	0.027	0.043	0.027	0.001	0.064	0.019	0.027

Table 12(c). Physical analysis

Analysis name	Value Arithmetic mean diameter 0.227 mm 0.42 gm/m ³ - 16 %		
Sirve analysis			
Bulk density			
Dry matter			
Volatile matter			
Calorific value	3132.95 cal/g		
Glass properties	63.07 %		
pH	9.10		

Soumra S. Mohapoilra

(Authorized Signatory)

Br. Seumya Sanjeeb Mohapatra Assistant Professor 1 8 MAR 2020 Dop1 of Chemical Engineering NIT RKL - 769008

Phone: (0661) 2476773, Fax: (0661) 2462022, Website: www.nitrkl.ac.in

A institute of national importance under ministry of HRD, Govt. of India

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/07/2021

Date: 30.07.2021

Name & Address of the Party:

Tata Steel BSL Ltd. At-Narendrapur, P.O.-Kusupanga Via-Meramandali, Dist-Dhenkanal

1. Fly ash, BFPP-1 2. Bed ash, BFPP-1

3. Fly ash, BFPP-2 4. Bed ash, BFPP-2

Sample Details:

Date of Receiving: Date(s) of Conducting Test: Date of Completion of Test: 25.06.2021 30.06.2021 23.07.2021

Method Adopted: 1. Major element analysis of ash samples through wet chemical route by using Volumetric, gravimetric, photometric, nephelometric, AAS and ICP-OES techniques.

2. TCLP study of ash samples as per US-EPA method 1311 or ASTM-D5233-92.

Leaching solution analysis by ICP-OES and AAS.

Detail Report: Following data tables are enclosed

Table-1. Chemical composition analysis of fly ash and bed ash samples.

 Table-2.
 Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Ash samples conducted as per US-EPA method 1311.

Table-3. Trace element analysis of TCLP or WET Procedure solutions of Ash samples; leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

Principal Technical Officer Central Characterization Dept.

N.B.:- The samples are not drawn by CSIR-IMMT. Liability, if any, for CSIR/IMMT arising in connection with the testing shall be subject to ceiling of amount received by the institute from the client. The report should not be interpreted in part.

सीएसआईआर - खनिज एवं पदार्थ प्रौद्योगिकी संस्थान (वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद)

भुवनेश्वर-751013, ओडिशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/07/2021

Date: 30.07.2021

Table-1. Chemical composition analysis of fly ash and bed ash samples.

Sl. No.	Component	Concentration in Test Samples, %				
		Fly Ash, BFPP-1	Bed Ash, BFPP-1	Fly Ash, BFPP-2	Bed Ash, BFPP-2	
1	SiO ₂	49.85	52.45	56.4	54.9	
2	Al ₂ O ₃	25.8	24.6	16.8	17.5	
3	Fe ₂ O ₃	2.64	3.66	4.35	5.18	
4	TiO ₂	1.38	1.41	0.88	0.79	
5	MnO ₂	0.02	0.04	0.11	0.16	
6	CaO	1.66	2.34	4.99	7.67	
7	MgO	0.97	1.12	1.10	2.21	
8	Na ₂ O	1.39	1.37	1.21	1.16	
9	K ₂ O	1.18	1.29	1.20	1.14	
10	Cr ₂ O ₃	0.018	0.017	0.031	0.027	
11	NiO	0.004	0.005	0.005	0.003	
12	CuO	0.009	0.009	0.007	0.004	
13	ZnO	0.008	0.009	0.017	0.007	
14	BaO	0.046	0.049	0.036	0.031	
15	P ₂ O ₅	0.38	0.34	0.32	0.21	
16	SO ₃	0.27	0.10	0.15	0.43	
17	Cl-	0.38	0.64	0.21	0.42	
18	LOI	6.56	2.37	3.34	3.70	
19	F ⁻ , mg/L	0.94	1.23	1.65	1.79	

(J. Das)

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/07/2021

Date: 30.07.2021

Table-2. Experimental variables for Toxicity Characteristic Leaching Procedure (TCLP) study of Ash samples conducted as per US-EPA method 1311.

Sl. No.	TCLP study	Variable Data				
	Variables	Fly Ash, BFPP-1	Bed Ash, BFPP-1	Fly Ash, BFPP-2	Bed Ash, BFPP-2	
1	TCLP study method	US-EPA Method-1311				
2	Sample type	Dust, Particle size < 100 μm	Dust and Gravels, Particle size < 8 mm	Dust, Particle size < 100 μm	Dust and Gravels, Particle size < 8 mm	
3	Sample particle size taken for leaching	Original sample	Original sample	Original sample	Original sample	
4	Initial pH of samples	9.11	12.29	10.30	12.41	
5	pH after HCl + heat	2.04	10.13	2.37	11.29	
6	Extraction fluid used	Extraction fluid -1	Extraction fluid -2	Extraction fluid -1	Extraction fluid -2	
7	pH of Extraction fluids	4.94	2.90	4.94	2.90	
8	Sample taken for leaching, gm	50				
9	Volume of extraction fluid used, ml	1000				
10	Liquid/solid ratio	20:1				
11	Head space	10 %				
12	Extraction Temperature °C	28				
13	Extraction Time, hour		. X	18		
14	Filter	Glass micro fiber, Whatman GF/C				
15	Washing of filters	With dil. HNO ₃ and distilled water				
16	pH of recovered extraction fluid	5.12	4.78	4.95	5.66	

(J. Das)

(वैज्ञानिक तथा औद्योगिक अनुसंधान परिषद) भुवनेश्वर-751013, ओड़िशा, भारत

CSIR - INSTITUTE OF MINERALS & MATERIALS TECHNOLOGY

(Council of Scientific & Industrial Research) Bhubaneswar - 751013, Odisha, INDIA

TEST REPORT

Ref. No. IMMT/CCD/07/2021

Date: 30.07.2021

Table-3. Trace element analysis of TCLP or WET Procedure solutions of Ash samples; leaching studies conducted as per US-EPA method 1311 and Appendix II of section 66261 of Title 22 of California Code Regulations (CCR).

Sl. No.	Component	Concentrations in TCLP or WET* leaching solutions of Ash test samples (mg/L)				Waste constituents concentration limits of
		Fly Ash, BFPP-1	Bed Ash, BFPP-1	Fly Ash, BFPP-2	Bed Ash, BFPP-2	TCLP or STLC. US- EPA and California Code of Regulations (mg/L)
1	Hg	0.005	0.004	0.004	0.003	0.2
2	As	0.034	0.054	0.041	0.025	5.0
3	Se	0.080	0.044	0.085	0.047	1.0
4	Sb*	0.056	0.049	0.038	0.021	15.0
5	Ba	0.46	0.20	0.38	0.27	100.0
6	Cd	0.001	0.002	0.001	0.002	1.0
7	Cr	0.026	0.021	0.031	0.025	5.0
8	Cr (VI)	0.012	0.009	0.015	0.010	5.0
9	Pb	0.024	0.028	0.024	0.016	5.0
10	Mn	0.42	0.31	0.69	0.27	10.0
11	Ag	0.012	0.009	0.034	0.008	5.0
12	Co*	0.18	0.14	0.16	0.13	80.0
13	Cu*	0.51	0.16	0.55	0.12	25.0
14	Mo*	0.19	0.54	0.29	0.06	350
15	Ni*	0.31	0.19	0.31	0.16	20.0
16	V*	1.23	0.39	1.72	0.31	24.0
17	Zn*	0.64	0.13	1.12	0.09	250

Remark: The TCLP and WET leaching solution analyses of fly ash and bed ash samples reveal that trace element concentrations are much below the Waste constituent concentration limits. Therefore, the ash samples are non-hazardous materials and their use as land filling or mine void dumping will not have any adverse effect on the ground water quality in respect of the analyzed parameters and no separate lining is required for dumping of the tested ash samples.

(J. Das