

By E-Mail

Ref.No.: MGM/P&E/109/21 Date: 27/09/2021

To
The Member Secretary,
Odisha State Pollution Control Board,
Paribesh Bhawan,
A/118, Nilakantha Nagar,
Bhubaneswar, 751012

Subject: Submission of Annual Environmental Statement in FORM-V for the year ending 31st March 2021 in respect of Tiringpahar Iron and Manganese Mine of M/s Tata Steel Ltd.

Reference: Rule-14 under Environmental (Protection) Amendment Rule, 1993 (G.S.R.386,22.04.1993)

Dear Sir,

We are hereby submitting the **A**nnual **E**nvironmental **S**tatement in "FORM-V" prescribed under the above referenced statute, for the year ending 31st March 2021 in respect of Tiringpahar Iron and Manganese Mine of M/s Tata Steel Ltd., At/Po-Bichhakundi, Dist-Keonjhar, Odisha.

This is for your kind information and perusal please. Receipt of the same may please be acknowledged.

Thanking you,

Yours faithfully, F: TATA STEEL LTD.

Mine & Production Planning Tiringpahar Iron and Manganese Mine Ferro Alloys Mineral Division

Enclousure: Annual Environmental Statement (FORM-V) for the Financial Year ending 31st March 2021

Copy To:

- 1) Zonal Office Kolkata, Central Pollution Control Board, South end Conclave, Block 502, 5th and 6th Floors, 1582 Rajdanga Main Road, Kolkata, West Bengal 700107.
- 2) The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Odisha-758001.
- 3) MoEF&CC Eastern Regional Office, A/3, Chandrasekharpur, Bhubaneswar-751023

ANNUAL ENVIRONMENTAL STATEMENT for FY 2020-21

[FORM - V]

For the year ending 31st MARCH 2021

[Rule-14 under Environmental (Protection) Amendment Rule, 1993] (G.S.R.386,22.04.1993)

Submitted By:

Tiringpahar Iron & Manganese Mine

M/s. Tata Steel Limited

At/Po: Bichhakundi, Via-Joda

District- Keonjhar, Odisha -758 034

FORM V

[See Rule 14 of Environment (Protection) Amendment Rules, 1993]

ENVIRONMENTAL STATEMENT

for the financial year ending the 31st March 2020

PART - A

(i)

occupier of the industry operation

or process.

Name and Address of the Owner / : TIRINGPAHAR IRON & MANGANESE

MINE

Mr. T.V. Narendran

Nominated Owner: Managing Director, M/s TATA Steel Ltd.

Jamshedpur, Dist- East Singhbhum

Jharkhand - 831 001

Agent: Mr. Amit Kumar Dubey,

Head(Manganese Group of Mines), Joda, FA

& MD. TATA Steel

P.O.: Bichhakundi, Via: Joda Dist: Keonjhar, Orissa - 758 034

(ii) Industry Category : Opencast Mining

(iii) Production Capacity – Units : **85,000 Tonnes per annum** (Manganese

Ore or 0.85 LTPA (as per Environmental

Clearance)

(iv) Year of Establishment : 1972

(v) Date of the last environmental: 28th Sept'2020

statement submitted

PART - B

Water and Raw Material Consumption: Mining is not a manufacturing process thus water is not a raw material essential for production; however, water is used for haul road dust suppression and other support services which are not directly linked with the quantum of production.

(1) Water Consumption m³/day (Av. figures for 2020-21)

: 45 m³/day (Water sprinkling) (**Total-16425m**³) **Process**

Cooling : Nil

: 30.43 m³/day (**Total-11106.95m**³) Domestic

Process water consumption per unit of product output				
During the previous	During the current			
Financial year	Financial year			
(1)	(2)			
	During the previous			

Page **2** of **12**

(1) Manganese	Ore	Nil		Nil
Remarks: M involve bene	langanese Ore eficiation and a roduction fron	is produced by semi med thus precludes the consu n mining doesn't involve	ımption of v	water. Unlike manufa
operational	activities.			
such raw mater	ials; However,	Unlike manufacturing pruses various other resou Electricity and Explosive	irces for and	
The table below	reflects the pr	roduction and dispatch fi	gures for th	e last two financial ye
Name of the	Name of	Consumption of		
raw materials	the product	During the previous		g the current
		Financial year		ancial year
		(Year 2019-20)		ar 2020-21)
-Nil-	Manganese	Production		oduction
	Ore	84998.000 MT		141.000MT
		Despatch 74006.99 MT		Despatch 052.55 MT
manganese. O as follows: Die grid & 1314Kv	other essential i esel (322.535Ki w-h from DG set	resources used during the L), Explosive (144475 Kg t). <u>PART - C</u>	e reporting), Electricity	(38430 Kw-h from
manganese. O as follows: Die grid & 1314Kv	other essential i esel (322.535Ki w-h from DG set	resources used during the L), Explosive (144475 Kg t). PART – C nment / unit of output (P	e reporting), Electricity	period (2019-20) is (38430 Kw-h from
manganese. O as follows: Die grid & 1314Kv	other essential in esel (322.535Ki w-h from DG set rged to environ	resources used during the L), Explosive (144475 Kg t). <u>PART - C</u>	e reporting), Electricity arameter as	period (2019-20) is (38430 Kw-h from
manganese. O as follows: Die grid & 1314Kv Pollution discha	other essential in esel (322.535Kl w-h from DG set rged to enviror Quan	resources used during the L), Explosive (144475 Kg t). PART – C nment / unit of output (P issued)	e reporting), Electricity Parameter as	period (2019-20) is (38430 Kw-h from specified in the Cons
manganese. O as follows: Die grid & 1314Kv Pollution discha	other essential in esel (322.535Ki w-h from DG set rged to enviror Quan pollu	resources used during the L), Explosive (144475 Kg) t). PART - C nment / unit of output (Pissued) tity of Concentra	e reporting), Electricity Parameter as ations of nts in	period (2019-20) is (38430 Kw-h from specified in the Cons
manganese. O as follows: Die grid & 1314Kv Pollution discha	other essential in esel (322.535Ki w-h from DG set rged to enviror Quan pollu disch	resources used during the L), Explosive (144475 Kg) t). PART - C nment / unit of output (Pissued) tity of Concentral utants Polluta	e reporting), Electricity arameter as ations of nts in arges	period (2019-20) is (38430 Kw-h from) s specified in the Cons Percentage of variation from prescribed standards with
manganese. O as follows: Die grid & 1314Kv Pollution discha Pollution	other essential in esel (322.535Ki w-h from DG set rged to enviror Quan pollu disch (mass	resources used during the L), Explosive (144475 Kg) t). PART - C nment / unit of output (Pissued) atity of Concentral atants Pollutal arged dischars s/day) (mass/v	e reporting), Electricity arameter as ations of nts in arges olume)	period (2019-20) is (38430 Kw-h from Sepecified in the Conservariation from prescribed standards with reasons
manganese. O as follows: Die grid & 1314Kv Pollution discha	other essential in esel (322.535Ki w-h from DG set rged to enviror Quan pollu disch (mass	resources used during the L), Explosive (144475 Kg) t). PART - C nment / unit of output (Pissued) atity of Concentral atants Pollutal arged dischars s/day) (mass/v	e reporting), Electricity arameter as ations of nts in arges	period (2019-20) is (38430 Kw-h from) s specified in the Cons Percentage of variation from prescribed standards with
manganese. O as follows: Die grid & 1314Kv Pollution discha Pollution	ther essential in esel (322.535Ki w-h from DG set of the enviror of the est o	resources used during the L), Explosive (144475 Kg) t). PART - C nment / unit of output (Pissued) atity of Concentral atants Pollutal arged dischars s/day) (mass/v	e reporting), Electricity carameter as ations of nts in arges olume) Nil- t source onment. Gro oth and sin nal GW t ted. The en	period (2019-20) is a (38430 Kw-h from Section 1) Section 1: Secti
manganese. O as follows: Die grid & 1314Kv Pollution discha Pollution	ther essential in esel (322.535Ki w-h from DG set grad to environ Quan polludisch (mass -1) There are effluents/j much belowithout is contaminal parameter well as Mo	resources used during the L), Explosive (144475 Kg) t). PART - C ment / unit of output (Pissued) Itity of Concentration Concentration Concentration Concentration (mass/v) Nil- re no direct/indirect pollutants to the environment of the present pit depintercepting the regionation aspect is eliminated are monitored, and respect to the concentration of the present pit depinter of the pi	e reporting), Electricity carameter as ations of nts in arges olume) Nil- t source onment. Gro oth and sin nal GW t ted. The en eports are s onthly comp	period (2019-20) is a (38430 Kw-h from Section 1) Section 1: Secti

are submitted to SPCB as well as MoEF&CC along with six monthly compliance reports. Pls. Refer to Enclosure for the last quarter ${\tt Env}$

Monitoring report.

<u>PART - D</u> (Hazardous Wastes)

[As specified under the Hazardous and Other Waste (Management and Transboundary Movement) Rules, 2016]

Hazardous Wastes	Total Quantity			
	During the previous	During the current		
	Financial year	Financial year		
	<u>Year (2019-20)</u>	<u>Year (2020-21)</u>		
(i) From Process				
Waste containing Oil	Nil	Nil		
Used Oil (in Ltrs.)	225 Ltrs	340Ltrs		
Cotton Waste (in Kgs)	5 (approx.)	0.5		
Duster (in Nos.)	Nil	Nil		
Filters (in Nos.)	45 (approx.)	Nil		
(ii)From pollution	Nil	Nil		
control facilities				

Remark: The quantity indicated reflects that of the quantity generated from the departmental HEMM fleets and is exclusive of the major chunk of generation, managed by the outsourced agencies deployed for mining. There exist one common HW storage facility catering to both Bamebari & Tiringpahar Iron & Manganese Mines.

<u>PART - E</u> (Solid Wastes)

	(Solid Wastes)				
_	Total Quantity				
_	During the previous	During the current			
	Financial year	Financial year			
	<u>Year (2019-20)</u>	<u>Year (2020-21)</u>			
(a) From Process	424127.0 MT	312510.0MT			
(Overburden material)					
(b) From pollution control	Nil	Nil			
facilities					
(c)					
(1) Quantity recycled or	Nil	Nil			
re-utilized within the					
unit					
(2) Sold	Nil	Nil			
(3) Disposal	424127.0 MT	312510.0MT			

PART - F

(Please specify the characterization (in terms of composition and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes)

- **Characterization of Hazardous Waste:** - The significant source of hazardous waste is Used oil (HW-5.1) is mainly Hydrocarbons and consist of lubricants, coolants, transformer oil and hydraulic oil. Lead Acetate batteries are also used in HEMM fleet which are mainly of automotive fuel cells.

- Overburden being the only form of significant solid **waste** contains lateritic morrum, shale and quartzite, etc.

- Disposal Practice: -

- SOLID WASTES -OB dumps are maintained as per the approved scheme of mine plan where proper terraces and peripheral drains are constructed supported with gabion wall/retention wall to arrest the silt/sediments during monsoon season. Once the slope of the dumps is stabilised then the dumps are reclaimed by plantation of native varieties of forestry saplings.
- ➤ USED OIL -The used oil generated at various sources is collected in leak proof barrels and then is kept on an impervious floor with oil catch pit. It is also ensured that the caps of the barrels remain intact and horizontal. The storage area is properly fenced, and caution board displayed. The used oil collected from sites are centrally auctioned to an SPCB authorised/registered recycler for recycling. At present, used oil generated from the departmental HEMM fleet (TSL's fleet of HEMM) are managed by the company through auctioning; however major chunk of generation is due to the contractual operations, managed by outsourced agencies as per applicable norms.
- Provision of impervious pit for collection of oily waste in the workshop premises in addition to the existing practice of collection at specified barrels.

PART - G

(Impact of pollution abatement measures taken on conservation of natural resources and on the cost of production)

- 1. Water spraying on haul Roads and Mine Pits is done regularly to suppress the dust.
- 2. All the haul roads in the mining area are made up of morrum & compacted. Regular repair is being done by dozer & grader after spreading the layer of sweet morrum over it.
- 3. Wet drilling is practices along with controlled blasting followed for minimal dust generation and prevent fly rocks.
- 4. During FY 2020-21, around 8640nos of saplings of native forestry species have been planted along the dump slope only.
- 5. The mine management proactively undertakes various environmental activities for the conservation/protection of environment. The cost incurred towards environmental measures are earmarked in a separate fund center. An abstract on the approximate cost spent towards environmental measures during FY 2020-21, in respect of Tiringpahar Iron & Manganese Mine is summarised in the table as follows:

Table. Environmental Expenditure for 2020-21

S.No.	Environmental Conservation/ Protection Measures	Expenditure (Lacs-INR)	
		Proposed	Actual
1	Afforestation on Dump slopes (5600 saplings/2Ha)	4.20	5.60
2	Construction/Maintenance of retaining wall (840mtrs)/Rain Pass	4.9	4.50
3	Construction/Maintenance of Garland drain, settling pits with check dam	1.20	1.15
4	Env. Awareness/Mines Environment & Mineral Conservation Week Celebration	4.0	3.8

S.No.	Environmental Conservation/ Protection Measures	Expenditure (Lacs-INR)		
		Proposed	Actual	
5	Annual Environmental Monitoring	12.0	9.5	
6	Installation of Automatic Wheel Wash System	16.0	14.50	
7	Rainwater Harvesting Structure/Pond	Nil	Nil	
8	Dust Suppression-Mobile Water Tanker	23.0	17.0	
9	Annual Water Audit by FICCI	6.5	4.5	
10	Hydrogeological Investigation as per CGWA Guidelines	6.0	4.5	
11	Restoration of SAL Saplings/Soil Amendment	6.5	4.85	
	Total	84.3	69.9	

6. In addition, Tata Steel Rural Development Society also undertakes the peripheral development activities with a large magnitude.

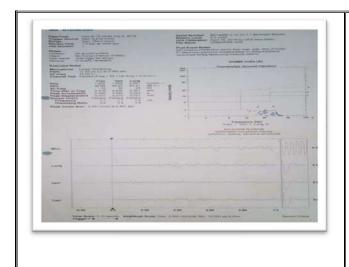
PART - H

(Additional measures / investment proposal for environmental protection, abatement of pollution, prevention of pollution)

- a) Garland drains and toe wall around the OB dumping shall be provided to check and channelize surface run-off.
- b) Plantation of forestry species shall be planted over the inactive waste dump slopes to arrest the airborne dust.
- c) Vetiver Plantation has been done in inactive dump slope.
- d) Green belt has been developed along colony and mining.
- e) Soil Conditioning and treatment practices followed for land reclamation
- f) In-House nursery for development of native varieties of forestry saplings.

PART - I

(Any other for improving the quality of environment)


- 1. With compliance to conditions of Environment Clearance obtained from MoEF, the following monitoring is being done at regular interval.
 - Ground Water Level at nearby bore wells
 - Trace metal in dust fall
 - Ground water quality at lower level
 - Meteorological monitoring
 - Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500.
- 2. Top soils generated during excavation are utilized immediately for nursery development and dump slope plantation.
- 3. Measures taken to control Air Pollution: -
 - Water sprinkling on the haul road,

- Provision of dust masks to the workmen,
- Adoption of wet drilling arrangement in the drill machines and
- Black topped road in the residential colony.
- Green belt along mining and colony
- Native sapling and vetiver plantation in inactive dumps.
- 4. Measures taken to control Water Pollution: -
 - Construction of the wall and garland drain along the dump slope to prevent surface runoff during monsoon.
 - Construction of soak pits for discharge of sanitary sewage.
 - Provision of oil separation pit for effluents coming out of workshop at Joribar.
 - Native sapling and vetiver plantation in inactive dumps.
- 5. Measures taken to control Noise & Ground Vibration: -
 - Thick plantation has been developed around the mines and office building to provide a canopy cover
 - Implementation of advance blasting technique(NONEL) to reduce the blast induced ground vibration and
 - Workmen are provided with earmuff while working near heavy earth moving machineries.
- 6. Measures taken to control Land Degradation: -
 - Afforestation around the non-active dump for stabilization and
 - Reclamation and rehabilitation of mined out area as per approved Scheme of Mining.
- 7. Surveillance of Occupational Health: Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood haematology, blood pressure, detailed cardiovascular assessment, neurological examination etc.
- 8. The mine is certified with ISO-14001:2015 (Environment Management System).

Safety & Environmental Precautions During Drilling & Blasting

Mining Machineries at Tiringpahar

2 Shovels of (Cap: 1.6 m³ Volvo.)

Best Management Practices:

Haul Road Dust Suppression Measures:

PHOTOGRAPHS OF WHEEL WASH FACILITY

Fig.2 Automatic Wheel Wash Facility @ Guruda Block of Tiringpahar

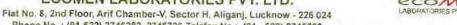
PHOTOGRAPHS OF AAQ STATIONS (CORE ZONE)

Fig.3 AAQ Station Near Guruda Sorting Yard (Tiringpahar Iron & Mn Mine)

Fig.4 AAQ Station Near Guruda Pit Office (Tiringpahar Iron & Mn Mine)

Fig.5 AAQ Station Near Mine Viewpoint (Tiringpahar Iron & Mn Mine)

<u>Fig.6 AAQ Station Near Joribar Weigh Bridge (at the common boundary of Bamebari & Tiringpahar)</u>


Thanking you,

Date: 27-09-2021

Yours faithfully, F: TATA STEEL LTD.

Head

Mine & Production Planning Tiringpahar Iron and Manganese Mine Ferro Alloys Mineral Division

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/01/21 TEST REPORT ISSUE DATE: 05.02.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location : AAQMS-1: Near Weigh Bridge (Guruda Pit)

Sampling Method : IS: 5182

Instrument Used : RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative

SI. No.						
	Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m ³)
1	03.01.2021	73.50	36.2	15.2	24.6	0.43
2	05.01.2021	66.20	38.3	13.4	24.2	0.42
3	9.01.2021	73.1	41.7	10.4	23.8	0.38
4	11.01.2021	62.50	38.5	9.8	23.4	0.44
5	16.01.2021	64.4	43.3 13.2 1		19.5	0.51
6	19.01.2021	74.7	35.4	12.6	18.50	0.37
7	23.01.2021	71.6	33.6	13.1	17.40	0.47
8	25.01.2021	66.4	35.3	13.5	19.3	0.44
A	verage	69.05	37.79	12.65	21.34	0.43
notifi Delh 2009.	as per CPCB cation New hi, 18 th Nov, for Ambient r quality	100	60	80	80	4.0
Standard Method		IS: 5182 (Part- 23) 2006	NAAQM Volume-I by CPCB	IS : 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS : 5182 (Part- 10)

^{*}These results are related only to tested items.

Archard

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/01/21 TEST REPORT ISSUE DATE: 05.02.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location : AAQMS-1: Near Weigh Bridge (Guruda Pit)

Sampling Method : IS: 5182

Instrument Used : RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative

		Concentration of Pollutant							
SI. No.	Date of Monitoring	NH ₃ (μg/m ³)	O ₃ (µg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	
1	03.01.2021	21.4	12.9	<1.0	1.2	<1.0	<4.0	<0.05	
2	05.01.2021	20.6	15.52	<1.0	1.2	<1.0	<4.0	<0.05	
3	9.01.2021	19.4	13.64	<1.0	1.3	<1.0	<4.0	<0.05	
4	11.01.2021	17.7	16.20	<1.0	1.41	<1.0	<4.0	<0.05	
5	16.01.2021	14.3	15.44	<1.0	1.32	<1.0	<4.0	<0.05	
6	19.01.2021	17.4	16.4	<1.0	1.54	<1.0	<4.0	<0.05	
7	23.01.2021	23.6	11.43	<1.0	1.15	<1.0	<4.0	<0.05	
8	25.01.2021	20.2	15.12	<1.0	1.16	<1.0	<4.0	<0.05	
I	Average	19.33	14.58	-	1.29	-	-	-	
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		400	180	1	20	6	5	1	
Standard Method		APHA 401 (Indophenol)	IS: 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS: 5182 (Part-11)	IS: 5182 (Part-12)	

^{*}These results are related only to tested items.

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph. 2746282 Fax-2745726 Manager (Q)

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/02/21 TEST REPORT ISSUE DATE: 05.02.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Date of	Concentration of Pollutant					
	Monitoring	$PM_{10}(\mu g/m^3)$	$PM_{2.5}(\mu g/m^3)$	$SO_2 (\mu g/m^3)$	$NO_2 (\mu g/m^3)$	CO (mg/m³)	
1	03.01.2021	71.2	34.78	11.70	23.66	0.38	
2	05.01.2021	66.40	37.24	12.73	19.42	0.35	
3	9.01.2021	65.2	31.19	13.66	18.28	0.33	
4	11.01.2021	74.4	31.40	09.58	15.32	0.32	
5	16.01.2021	64.32	41.24	09.64	13.36	0.35	
6	19.01.2021	58.42	43.20	10.74	11.34	0.41	
7	23.01.2021	63.24	32.19	11.54	13.40	0.34	
8	25.01.2021	71.42	34.20	13.72	15.30	0.32	
A	verage	66.83	35.68	11.66	16.26	0.35	
notifi Delhi, 1 for A	as per CPCB cation New .8 th Nov, 2009. Ambient air quality	100	60	80	80	4.0	
Standard Method		IS : 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS: 5182 (Part-10)	

^{*}These results are related only to tested items.

Ecomen Laboratories Pyt. Ltd. Hat No.8 Second Floor Artf Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/02/21 TEST REPORT ISSUE DATE: 05.02.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

GT N	5	Concentration of Pollutant						
SI. No.	Date of Monitoring	NH ₃ (μg/m ³)	O ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m ³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1	03.01.2021	18.50	12.61	<1.0	1.09	<1.0	<4.0	<0.05
2	05.01.2021	17.46	13.34	<1.0	1.02	<1.0	<4.0	<0.05
3	9.01.2021	16.64	12.92	<1.0	1.06	<1.0	<4.0	<0.05
4	11.01.2021	21.40	11.21	<1.0	1.04	<1.0	<4.0	<0.05
5	16.01.2021	13.62	10.432	<1.0	0.92	<1.0	<4.0	<0.05
6	19.01.2021	14.44	16.73	<1.0	0.85	<1.0	<4.0	<0.05
7	23.01.2021	21.62	17.37	<1.0	0.92	<1.0	<4.0	<0.05
8	25.01.2021	21.27	18.43	<1.0	1.22	<1.0	<4.0	<0.05
A	Average	18.12	14.13	-	1.02	-	-	-
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		400	180	1	20	6	5	1
Standard Method		APHA 401 (Indopheno l)	IS : 5182 (Part-9) 1974	IS : 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS: 5182 (Part-11)	IS : 5182 (Part-12)

^{*}These results are related only to tested items.

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph. 2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/05/21 TEST REPORT ISSUE DATE: 07.02.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

IS: 5182 Sampling Method

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI.	Location		nt			
No.	(Date of Monitoring)	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)
1	Jaribahal (5.01.2021)	72.4	36.4	12.4	19.5	0.62
2	Balda (10.01.2021)	74.6	39.4	12.2	18.62	0.58
3	Palsa (13.01.2021)	$1 \times 10^{4} \times 10^{4}$		21.8	0.48	
4	Jajanga 72.7		36.5	14.6	19.8	0.65
A	Average	75.03	37.18	13.70	19.93	0.58
notif Delhi, for A	as per CPCB ication New 18 th Nov, 2009. Ambient air quality	100	60	80	80	4.0
Standard Method		IS: 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS: 5182 (Part-6) 2006	IS: 5182 (Part-10)

^{*}These results are related only to tested items.

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/03/21 TEST REPORT ISSUE DATE: 07.02.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

Name of the Customer Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

IS: 5182 Sampling Method

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI.	Location		Concentration of Pollutant					
No.	(Date of Monitoring)	NH ₃ (μg/m ³)	Ο ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo (a) pyrene (ng/m³)
1	Jaribahal (5.01.2021)	19.4	11.3	<1.0	1.42	<1.0	<4.0	<0.05
2	Balda (10.01.2021)	21.7	12.2	<1.0	1.12	<1.0	<4.0	< 0.05
3	Palsa (13.01.2021)	22.9	13.8	<1.0	1.14	<1.0	<4.0	< 0.05
4	Jajanga (19.01.2021)	22.2	11.8	<1.0	1.10	<1.0	<4.0	< 0.05
	Average	21.55	12.28	-	1.20	-	-	-
notif Delhi,	Limit as per CPCB notification New Delhi, 18thNov, 2009. for Ambient air quality		180	1	20	6	5	1
quality Standard Method		APHA 401 (Indoph enol)	IS: 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQ M Volume- I by CPCB	NAAQ M Volume- I by CPCB	IS: 5182 (Part-11)	IS: 5182 (Part-12)

^{*}These results are related only to tested items.

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/AN/03/21 TEST REPORT ISSUE DATE: 07.02.2021

TEST REPORT OF AMBIENT NOISE LEVEL MONITORING

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

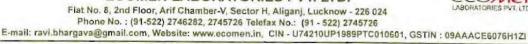
Instrument Used : Noise Meter (Lutron)

S.No.	Date of Monitoring	Name of Location	Category of Zone	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1	13-01-2021	Near Screen Plant	Industrial	74.7	44.4
2	15-01-2021	Near Mine Office	Industrial	66.3	43.6
3	21-01-2021	Near Sorting Yard	Industrial	71.8	43.4

Noise (Ambient Standard) as per The Noise Pollution (Regulation and Control) Rules, 2000

Area Co	ode Category of area		<u>Limit in dB (A) Leq</u>	
		Day Time		Night Time
A	Industrial Area	75		70
В	Commercial Area	65		55
C	Residential Area	55		45
D	Silence Zone	50		40
Note:				
1.	Day time is reckoned in between 6:00 AM	and 10:00 PM.		
2.	Night time is reckoned in between 10:00 F	PM and 6:00 AM		

3. Silence zone is defined as area up to 100m around such premises as hospitals,


educational institutions & courts. The silence zones are to be declared by a competent authority.

 Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Analyst

Authorized Signatory

Ecomen Laboratories 1 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECOLAB/Stack1/03/21 TEST REPORT ISSUE DATE: 07.02.2021

TEST REPORT OF FLUE GAS EMISSIONS*

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Date of Sampling 17.01.2021

Sample Collected by : Ecomen Team in presence of TSL's Representative

Source of Emission : Exhaust Emission from DG Set

Sampling Method IS: 11255

Instrument Used : Stack Monitoring Kit

Details of Stack

Material of Construction M.S.

Stack Attached to DG Set-01 (Camp)

Capacity 100 KVA

Stack Height:

i) Above the Platform/Roof (m) 10.0 ii) Above the Ground Level (m) 15.0 Stack Top Circular Inside Diameter of Stack (m) 0.0889

(at sampling point)

Cross Sectional Area of Duct/Stack (m²) 0.0061 Ambient Air (°C) 18.0 Flue Gas Temperature (°C) 174.0 Exit Velocity of Gas (m/sec.) 9.25 Flow Rate (Nm3/ sec.) 0.037 Type of Fuel **HSD** Ouantity of Fuel Consumption (lit/hr) 20-22

	Q 0.0011010) 01 1 0.01	consumption (num)	,	
Sl. No.	Tests Conducted	Method	<u>Pollutant Concentration in</u> (At 15% O ₂ Correction) in gm/Kw-Hr	Standards as per CPCB in gm/Kw-Hr
1.	Particulate Matter (PM)	IS:11255 (Part-1)	0.055	0.2
2.	Sulphur Dioxide (SO ₂)	IS:11255 (Part-2)	0.031	-
3.	Nitrogen Dioxide (NO _x)	IS:11255 (Part-7)	0.051	4.0
4.	Hydrocarbon (HC)	IS:13270	1.19	(NOx+HC)
5.	Carbon Monoxide (CO)	IS:13270	1.12	3.5

^{*}The result is related only to tested item.

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024
Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/01/21 TEST REPORT ISSUE DATE: 07.02.2021

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 7/1/2021 Date of Sample Receiving : 11/1/2021

Packing of Sample : As per requirement
Date of Analysis : 11/1/2021-16/1/2021

Source of Sample : Supply Water @ Sorting Yard

Sl.	TESTS	PROTOCOL	RESULT	Detection		INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	pН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.23	2.0-12	6.5-8.5	No Relax.	
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	176	10-10000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	149	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	156	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	43.6	5 – 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	12.8	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	16.2	5-1000	250.0	1000.0	
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	21.4	5-200	200.0	400.0	
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.4	5-100	45.0 (Max)	No Relax.	
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.44	0.02-10	1.0	1.5	
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5	
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.024	0.02-50	0.3 (Max)	No Relax.	
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30	
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.	
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2	
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax	
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax	
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.	
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.06	0.02-50	5	15	
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax	
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.	
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0	
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax	
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002	
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0	
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0	
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent	
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent	
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-	
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation	

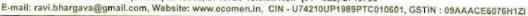
*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726 Manager (Q)


Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024
Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph. 2746282 Fax-2745726

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/07/21 TEST REPORT ISSUE DATE: 07.02.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

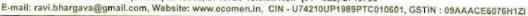
Date of Sampling : 10/1/2021 Date of Sample Receiving : 15/1/2021

Packing of Sample : As per requirement
Date of Analysis : 16/1/2021-21/1/2021

Source of Sample : Borewell Near Highschool (Jajang)

SI.	TESTS	PROTOCOL	RESULT	Detection	INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	рН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.4	2.0-12	6.5-8.5	No Relax.
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	172	10-10000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	141.3	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	164.6	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	43.8	5 – 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	12.6	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	18.5	5-1000	250.0	1000.0
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	29.4	5-200	200.0	400.0
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.8	5-100	45.0 (Max)	No Relax.
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.41	0.02-10	1.0	1.5
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.06	0.02-50	0.3 (Max)	No Relax.
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.062	0.02-50	5	15
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	_
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation

*These results are related only to item tested.


BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726 Manager (Q)

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/12/21 TEST REPORT ISSUE DATE: 09.02.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 10/1/2021 Date of Sample Receiving : 16/1/2021

Packing of Sample : As per requirement
Date of Analysis : 16/1/2021-21/1/2021

Source of Sample : Borewell Near Joribar Village

SI.	TESTS	PROTOCOL	RESULT	Detection		INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	pН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.45	2.0-12	6.5-8.5	No Relax.	
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	210	10-10000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	142	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	186	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	41.3	5 – 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	16.7	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	28.8	5-1000	250.0	1000.0	
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	39.2	5-200	200.0	400.0	
13.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	5.8	5-100	45.0 (Max)	No Relax.	
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.52	0.02-10	1.0	1.5	
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5	
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.024	0.02-50	0.3 (Max)	No Relax.	
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30	
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.	
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2	
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax	
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax	
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.	
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.25	0.02-50	5	15	
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax	
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.	
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0	
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax	
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002	
29.	Anionic Detergents as MBAS(mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0	
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0	
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent	
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent	
33.	Fecal Coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-	
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation	

*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726 Manager (Q)

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/DUSTFALL/03/21

TEST REPORT ISSUE DATE: 09.02.2021

Dust Fall Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location DF-1: Near Sorting Yard (Guruda)

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Duration of		Concentration of Pollutant (t/km2/month)						
	Monitoring Total Dust Fall (t/km2/month) Analysis Results								
1	01.01.2021		Co (%)	Ni (%)	Hg (%)	As (%)			
	To 31.01.2021	0.83	<0.001	<0.001	<.001	<0.001			

^{*}This result is related only to tested item/sample.

Ecomen Laboratories i'vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/01/21 TEST REPORT ISSUE DATE: 09.02.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location 50 mtr from Haul Road (Guruda)

Date of Sampling 13.01.2021

Sampling Method IS: 5182(Part 23): 2006

Sample Collected By Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	945	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	295	500 mg/m ³ at 25+5 m from the source of generation

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

mail: rayl.bhargaya@gmail.com, Website: www.acomen.in, CIN, 1/742101191089

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04 TEST REPORT NO.: ECO LAB/Fugitive/02/21

TEST REPORT ISSUE DATE: 09.02.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : 100 mtr from Screen Plant (Guruda)

Date of Sampling : 21.01.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	875	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	290	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

Ecomen Laboratories 1 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726 Manager (Q)

ecoMen LABORATORIES PVT, LTD,

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024
Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/05/21 TEST REPORT ISSUE DATE: 9.02.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : Near Sorting Yard (Guruda)

Date of Sampling : 25.01.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	765	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	236	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

Ecomen Laboratories I'vt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aligan). Lucknow-226024 Ph. 2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/05/21 TEST REPORT ISSUE DATE: 09.02.2021

Personal Dust Sampling Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mines

M/s Tata Steel Limited

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

Sampling Representative Departmental & Contractual Mine Workers

Sl. No	Date of Sampling	Name of the Person Sampled	Occupation/ Designation	Personal Number/ Gate Pass Number	Max. Permissible Value (8hr TWA)	Respirable Particulate matter as RPM(mg/m³) 8-hr TWA
1	06-01-2021	Sudhir Ku Karun	Sorting Labour	TSP/809982/0919	3.0 mg/m^3	2.72
2	08-01-2021	Naresh Singh	Sorting Labour	TSP/751501/0819	(Ref. DGMS	2.25
3	13-01-2021	Krushna Lohar	Mine Foreman	TSL (Departmental)	(Tech.) (S&T) Circular No.01 Dhanbad,	1.81
4	15-01-2021	Jenaram Pingua	Security supervisor	Contractual	Dated 21st January 2010)	2.56
5	17-01-2021	Amit Kumar	Dumper Operator	-	Junuary 2010)	2.74

Note: In all the above samples concentration of silica in the respirable dust was less than 5%

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aliganj. Lucknow-226024

Ph.2746282 Fax-2745726

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQM/04/21 TEST REPORT ISSUE DATE: 02.02.2021

Meteorological Data Monitoring Reports

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location Mines Office

Sample Collected By Using Automatic Weather Station

		Tempe	erature	Rel	ative	Wind	Speed	****	D. C. B.	
SI. No.	Date of Monitoring	(°	C)	Humid	lity (%)	m/	'sec	Wind	Rain fall	
	Withing	Max.	Min.	Max.	Min.	Max.	Min.	Direction	(mm)	
1	01.01.2021	32.8	14.4	46.9	13.2	1.8	0	NE	0	
2	02.01.2021	32.1	16.5	62.3	13.1	2.4	0	SE	0	
3	03.01.2021	33.9	15.3	59.0	13.4	1.3	0	SE	0	
4	04.01.2021	35.7	14.7	58.7	12.5	1.5	0	SE	0	
5	05.01.2021	35.0	15.9	56.8	12.7	1.6	0	NSE	0	
6	06.01.2021	35.3	16.2	49.2	15.03	1.6	0	NS	0	
7	07.01.2021	36.2	14.0	61.4	13.6	3.2	0	SE	0	
8	08.01.2021	36.4	13.8	52.8	12.74	1.6	0	SSE	0	
9	09.01.2021	37.7	12.7	75.8	15.45	1.4	0	SW	0	
10	10.01.2021	36.4	11.5	63.0	18.5	1.4	0	SE	0	
11	11.01.2021	36.2	13.5	74.6	24.59	0.9	0	SSE	0	
12	12.01.2021	35.1	12.5	77.4	32.62	2.5	0	SW	0	
13	13.01.2021	28.0	14.6	94.3	48.51	1.7	0	NW	0	
14	14.01.2021	33.8	15.8	94.2	25.49	1.6	0	NW	0	
15	15.01.2021	34.2	15.7	81.9	18.33	0.8	0	SW	0	
16	16.01.2021	36.3	17.1	66.1	16.8	1.8	0	SW	0	
17	17.01.2021	36.4	17.3	72.8	20.49	1.0	0	SE	0	
18	18.01.2021	38.6	18.8	75.7	12.82	0.9	0	SW	0	
19	19.01.2021	38.7	18.8	61.2	18.61	1.9	0	SE	0	
20	20.01.2021	34.8	20.4	67.9	24.8	1.2	0	SW	0	
21	21.01.2021	36.8	23.45	64.19	21.3	1.2	0	SW	0	
22	22.01.2021	37.4	20.33	65.23	15.2	1.3	0	SE	0	
23	23.01.2021	38.42	20.56	68.2	22.4	2.7	0	SE	0	
24	24.01.2021	43.01	21.48	69.54	18.1	3.2	0	SSW	0	
25	25.01.2021	39.85	18.7	55.56	16.8	4.5	0	ESE	0	

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

SI. No.	Date of Monitoring	Temperature (°C)		Relative Humidity (%)		Wind Speed m/sec		Wind Direction	Rain fall (mm)
		Max.	Min.	Max.	Min.	Max.	Min.	Direction	()
26	26.01.2021	38.7	19.75	62.01	15.4	4.6	0	ESE	0
27	27.01.2021	35.6	19.3	68.34	23.7	1.1	0	ESE	0
28	28.01.2021	37.3	20.2	66.13	13.8	1.8	0	NE	0
26	29.01.2021	38.3	18.51	69.36	15.6	1.6	0	NE	0
30	30.01.2021	42.9	21.4	33.81	11.6	3.4	0	NE	0
31	31.01.2021	41.4	21.7	25.59	13.6	2.3	0	SW	0

^{*}These results are related only to tested items.

Authorized Signatory

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph. 2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/ON/06/21 TEST REPORT ISSUE DATE: 09.02.2021

TEST REPORT OF OCCUPATIONAL/WORKPLACE NOISE MONITORING

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

Instrument Used : Noise Meter (Lutron)/Personal Dosimeter

Sampling Duration : 1hr for Workplace/8hr for Personnel

S.No.	Date of	Name of	Activity/	8-hr TWA	DGMS
	Monitoring	Location/Person	Occupation	dB(A)	Permissible
					Limit
1	8-01-2021	Sorting Yard	Maintenance (HEMM)	73.2	85.0
2	11-01-2021	Screen Plant	Supervision	72.6	85.0
					0 = 0
3	15-01-2021	Mr. Raju Kumar	Manager, Mining	63.4	85.0
4	17-01-2021	Mr. Naresh Singh	Sorting Lbour	70.3	85.0
5	19-01-2021	Near Stack yard	Stacking of ore	66.4	85.0

Analyst

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726 Manager (O)

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/04/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

AAQMS-1: Near Weigh Bridge (Guruda Pit) Location

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Date of Monitoring	Concentration of Pollutant						
		PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m ³)		
1	05.02.2021	74.40	32.4	15.3	22.1	0.42		
2	07.02.2021	69.60	35.3	16.5	24.2	0.44		
3	11.02.2021	71.5	41.7	13.7	19.5	0.32		
4	13.02.2021	63.50	36.5	15.4	18.4	0.36		
5	19.02.2021	64.8	39.3	13.6	17.20	0.35		
6	21.02.2021	74.8	36.4	11.7	17.2	0.47		
7	23.02.2021	73.7	37.6	14.6	17.4	0.43		
8	25.02.2021	66.8	34.3	13.5	19.6	0.46		
A	verage	69.89	36.69	14.29	19.45	0.41		
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		100	60	80	80	4.0		
Standard Method		IS: 5182 (Part- 23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS : 5182 (Part- 10)		

^{*}These results are related only to tested items.

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/04/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location : AAQMS-1: Near Weigh Bridge (Guruda Pit)

Sampling Method : IS: 5182

Instrument Used : RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative


	Date of Monitoring	Concentration of Pollutant							
SI. No.		NH ₃ (μg/m ³)	O ₃ (µg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	
1	05.02.2021	21.2	12.6	<1.0	1.3	<1.0	<4.0	<0.05	
2	07.02.2021	20.4	15.5	<1.0	1.4	<1.0	<4.0	<0.05	
3	11.02.2021	19.7	13.63	<1.0	1.32	<1.0	<4.0	<0.05	
4	13.02.2021	17.5	16.22	<1.0	1.43	<1.0	<4.0	<0.05	
5	19.02.2021	14.6	14.42	<1.0	1.36	<1.0	<4.0	<0.05	
6	21.02.2021	17.5	16.4	<1.0	1.52	<1.0	<4.0	<0.05	
7	23.02.2021	18.6	11.42	<1.0	1.12	<1.0	<4.0	<0.05	
8	25.02.2021	19.5	15.16	<1.0	1.18	<1.0	<4.0	<0.05	
I	Average	18.63	14.42	-	1.33	-	-	-	
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		400	180	1	20	6	5	1	
Standard Method		APHA 401 (Indophenol)	IS: 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS: 5182 (Part-11)	IS: 5182 (Part-12)	

^{*}These results are related only to tested items.

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph. 2746282 Fax-2745726

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/05/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Date of	Concentration of Pollutant						
	Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)		
1	05.02.2021	67.2	32.78	10.70	21.66	0.36		
2	07.02.2021	64.40	35.24	10.73	17.32	0.34		
3	11.02.2021	63.2	29.19	11.56	15.38	0.32		
4	13.02.2021	61.4	30.42	09.54	15.34	0.35		
5	19.02.2021	64.2	37.4	09.56	13.38	0.38		
6	21.02.2021	58.2	43.24	10.72	11.36	0.43		
7	23.02.2021	63.6	32.13	11.53	14.40	0.47		
8	25.02.2021	63.4	34.25	13.71	14.40	0.51		
A	verage	63.20	34.33	11.01	15.41	0.40		
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		100	60	80	80	4.0		
Standard Method		IS: 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS: 5182 (Part-10)		

^{*}These results are related only to tested items.

Ecomen Laboratories Pyt. Ltd. Hat No.8 Second Floor Artf Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/05/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

GY N	5			Conce	ntration of P	Pollutant		
SI. No.	Date of Monitoring	NH ₃ (μg/m ³)	O ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m ³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1	05.02.2021	15.60	13.5	<1.0	1.02	<1.0	<4.0	<0.05
2	07.02.2021	17.6	13.6	<1.0	0.67	<1.0	<4.0	<0.05
3	11.02.2021	17.6	14.9	<1.0	0.85	<1.0	<4.0	<0.05
4	13.02.2021	19.40	13.21	<1.0	1.04	<1.0	<4.0	<0.05
5	19.02.2021	17.52	10.32	<1.0	0.94	<1.0	<4.0	<0.05
6	21.02.2021	14.46	16.43	<1.0	0.88	<1.0	<4.0	<0.05
7	23.02.2021	18.5	15.37	<1.0	1.02	<1.0	<4.0	<0.05
8	25.02.2021	19.7	16.43	<1.0	1.22	<1.0	<4.0	<0.05
I	Average	17.55	14.22	-	0.96	-	-	-
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		400	180	1	20	6	5	1
Stand	ard Method	APHA 401 (Indopheno l)	IS : 5182 (Part-9) 1974	IS : 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS : 5182 (Part-11)	IS : 5182 (Part-12)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/07/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

IS: 5182 Sampling Method

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI.	Location		Concent	ration of Polluta	nt	
No.	(Date of Monitoring)	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)
1	Jaribahal (9.02.2021)	67.4	33.4	12.5	21.5	0.52
2	Balda (13.02.2021)	76.4	35.4	12.6	13.2	0.48
3	Palsa (15.02.2021)	83.4	42.4	11.6	17.8	0.42
4	Jajanga (17.02.2021)	69.7	34.6	11.6	11.8	0.43
A	Average	74.23	36.45	12.08	16.08	0.46
notifi Delhi, 1 for A	as per CPCB ication New 18 th Nov, 2009. Ambient air quality	100	60	80	80	4.0
Standard Method		IS: 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS: 5182 (Part-6) 2006	IS: 5182 (Part-10)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/07/21 TEST REPORT ISSUE DATE: 07.03.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

: IS: 5182 Sampling Method

Instrument Used : RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative

SI.	Location			Conce	ntration of	Pollutant		
No.	(Date of Monitoring)	NH ₃ (µg/m ³)	Ο ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo (a) pyrene (ng/m³)
1	Jaribahal (9.02.2021)	15.4	11.5	<1.0	1.32	<1.0	<4.0	< 0.05
2	Balda (13.02.2021)	18.7	12.6	<1.0	1.22	<1.0	<4.0	< 0.05
3	Palsa (15.02.2021)	21.9	14.8	<1.0	1.04	<1.0	<4.0	< 0.05
4	Jajanga (17.02.2021)	20.2	10.8	<1.0	1.17	<1.0	<4.0	< 0.05
1	Average	19.05	12.43	-	1.19	-	-	-
notif Delhi, for	as per CPCB fication New 18 th Nov, 2009. Ambient air quality	400	180	1	20	6	5 1	
quality Standard Method		APHA 401 (Indoph enol)	IS: 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQ M Volume- I by CPCB	NAAQ M Volume- I by CPCB	IS: 5182 (Part-11)	IS: 5182 (Part-12)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aligani, Lucknow - 226 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/AN/01/21 TEST REPORT ISSUE DATE: 07.03.2021

TEST REPORT OF AMBIENT NOISE LEVEL MONITORING

Name of the Customer Tiringpahar Iron & Manganese Mine of

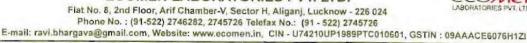
M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

Instrument Used : Noise Meter (Lutron)

S.No.	Date of Monitoring	Name of Location	Category of Zone	Day Time Leq Value in dB(A)	Night Time Leq Value in dB(A)
1	11-02-2021	Near Screen Plant	Industrial	76.7	46.7
2	17-02-2021	Near Mine Office	Industrial	68.2	44.2
3	21-02-2021	Near Sorting Yard	Industrial	70.1	45.4

Noise (Ambient Standard) as per The Noise Pollution (Regulation and Control) Rules, 2000


Area Co	ode Category of area		Limit in aB (A) Leq	
		Day Time		Night Time
A	Industrial Area	75		70
В	Commercial Area	65		55
C	Residential Area	55		45
D	Silence Zone	50		40
Note:				
1.	Day time is reckoned in between 6:00 AM	I and 10:00 PM.		
2	Night time is reckaned in between 10:00 I	PM and 6:00 AM		

3. Silence zone is defined as area up to 100m around such premises as hospitals,

educational institutions & courts. The silence zones are to be declared by a competent authority.

4 Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Authorized Signatory

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECOLAB/Stack1/05/21 TEST REPORT ISSUE DATE: 07.03.2021

TEST REPORT OF FLUE GAS EMISSIONS*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

13.02.2021 Date of Sampling

Sample Collected by Ecomen Team in presence of TSL's Representative

Source of Emission Exhaust Emission from DG Set

Sampling Method IS: 11255

Instrument Used Stack Monitoring Kit

Details of Stack

Material of Construction M.S.

Stack Attached to DG Set-01 (Camp)

Capacity 100 KVA

Stack Height:

i) Above the Platform/Roof (m) 10.0 ii) Above the Ground Level (m) 15.0 Stack Top Circular Inside Diameter of Stack (m) 0.0889

(at sampling point)

Cross Sectional Area of Duct/Stack (m²) 0.0061 Ambient Air (°C) 18.0 Flue Gas Temperature (°C) 174.0 Exit Velocity of Gas (m/sec.) 9.25 Flow Rate (Nm3/ sec.) 0.037 Type of Fuel **HSD** Ouantity of Fuel Consumption (lit/hr) 20-22

	200111110	Companing tron (ma m)				
Sl. No.	Tests Conducted	Method	<u>Pollutant Concentration in</u> (At 15% O ₂ Correction) in gm/Kw-Hr	Standards as per CPCB in gm/Kw-Hr		
1.	Particulate Matter (PM)	IS:11255 (Part-1)	0.062	0.2		
2.	Sulphur Dioxide (SO ₂)	IS:11255 (Part-2)	0.035	-		
3.	Nitrogen Dioxide (NO _x)	IS:11255 (Part-7)	0.053	4.0		
4.	Hydrocarbon (HC)	IS:13270	1.24	(NOx+HC)		
5.	Carbon Monoxide (CO)	IS:13270	1.13	3.5		

^{*}The result is related only to tested item.

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/03/21 TEST REPORT ISSUE DATE: 07.03.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 8/2/2021 Date of Sample Receiving : 11/2/2021

Packing of Sample : As per requirement
Date of Analysis : 11/2/2021-15/2/2021

Source of Sample : Supply Water @ Sorting Yard

Sl.	TESTS	PROTOCOL	RESULT	Detection	INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour (Hazen unit)	APHA, 23rd Ed. 2017, 2120 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable
4.	nH	APHA, 23rd Ed. 2017, 2100 A+B APHA, 23rd Ed. 2017, 4500 H+A+B	7.45	2.0-12	6.5-8.5	No Relax.
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 4300 H+A+B	BDL	1-100	1.0	5.0
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017, 2130-A+B APHA, 23rd Ed. 2017,2540-C	170	10-10000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2340-C APHA, 23rd Ed. 2017,2320 A+B	145	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2320 A+B APHA, 23rd Ed. 2017,2340 A+C	153	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 2340 A+C	43.8	5-1300	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Cd A+B	12.4	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017, 3300 Mg A+B	16.0	5-1000	250.0	100.0
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 CFA+B APHA, 23rd Ed. 2017,4500 SO42- E	21.5	5-200	200.0	400.0
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.6	5-200	45.0 (Max)	No Relax.
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	0.42	0.02-10	1.0	1.5
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 4300-C	BDL	0.02-10	0.05	1.5
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	0.022	0.02-50	0.03 (Max)	No Relax.
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3300 Fe B	BDL	0.02-30	0.5 (Max) 0.10	0.30
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.001-2	0.001(Max)	No Relax.
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.03 (Max)	0.2
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017, 3300 AF A+B	BDL	0.002-100	0.003 (Max)	No Relax
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.01-2	0.01(Max)	No Relax.
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.08	0.02-50	5	15
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017, 3111 AFB	BDL	0.01-10	0.01(Max)	No Relax
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 1500 CH 111C	BDL	1-5	0.001	0.002
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, 4-360 CFB	Absent	1.8	Absent	Absent
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 14 B	Absent	1.8	Absent	Absent
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-
	,	APHA, 23rd Ed. 2017, 6630 B&C			No	No
34.	Pesticide	, , , , , , , , , , , , , , , , , , , ,	BDL	2-10	Relaxation	Relaxation

*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/07/21 TEST REPORT ISSUE DATE: 07.03.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

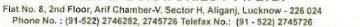
Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 8/2/2021 Date of Sample Receiving : 11/2/2021

Packing of Sample : As per requirement
Date of Analysis : 11/2/2021-15/2/2021

Source of Sample : Borewell Near Highschool (Jajang)

SI.	TESTS	PROTOCOL	RESULT	Detection	INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	pH	APHA, 23rd Ed. 2017, 4500 H+A+B	7.34	2.0-12	6.5-8.5	No Relax.
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	176	10-10000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	138.5	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	161.4	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	43.4	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	12.5	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	18.4	5-1000	250.0	1000.0
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	31.4	5-200	200.0	400.0
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.3	5-100	45.0 (Max)	No Relax.
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.44	0.02-10	1.0	1.5
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.21	0.02-50	0.3 (Max)	No Relax.
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.064	0.02-50	5	15
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation


*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/10/21 TEST REPORT ISSUE DATE: 09.03.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 8/2/2021 Date of Sample Receiving : 11/2/2021

Packing of Sample : As per requirement
Date of Analysis : 11/2/2021-15/2/2021

Source of Sample : Borewell Near Joribar Village

SI.	TESTS	PROTOCOL	RESULT	Detection	INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	pH	APHA, 23rd Ed. 2017, 4500 H+A+B	7.4	2.0-12	6.5-8.5	No Relax.
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	212	10-10000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	143	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	176	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	41.7	5 – 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	16.4	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	28.5	5-1000	250.0	1000.0
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	39.2	5-200	200.0	400.0
13.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	5.4	5-100	45.0 (Max)	No Relax.
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.53	0.02-10	1.0	1.5
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.026	0.02-50	0.3 (Max)	No Relax.
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.21	0.02-50	5	15
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002
29.	Anionic Detergents as MBAS(mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent
33.	Fecal Coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation

*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/DUSTFALL/03/21 TEST REPORT ISSUE DATE: 09.03.2021

Dust Fall Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location DF-1: Near Sorting Yard (Guruda)

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Duration of		Concentration of Pollutant (t/km2/month)					
	Monitoring	Total Dust Fall (t/km2/month)	Analysis Results					
1	01.02.2021		Co (%)	Ni (%)	Hg (%)	As (%)		
	To 28.02.2021	0.84	<0.001	<0.001	<.001	<0.001		

^{*}This result is related only to tested item/sample.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/01/21 TEST REPORT ISSUE DATE: 09.03.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location 50 mtr from Haul Road (Guruda)

Date of Sampling 15.02.2021

Sampling Method IS: 5182(Part 23): 2006

Sample Collected By Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	942	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	297	500 mg/m ³ at 25+5 m from the source of generation

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

-mail: rayl bhargaya@gmail.com, Wahsite: www.scomen.in, CIN, UZ4210191999

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04 TEST REPORT NO.: ECO LAB/Fugitive/02/21

TEST REPORT ISSUE DATE: 09.03.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : 100 mtr from Screen Plant (Guruda)

Date of Sampling : 23.02.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	861	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS: 5182-Part-4	μg/m³	176	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

ecoMen LABORATORIES PVT, LTD,

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024
Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/05/21 TEST REPORT ISSUE DATE: 9.03.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : Near Sorting Yard (Guruda)

Date of Sampling : 25.02.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	760	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS: 5182-Part-4	μg/m³	156	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/05/21 TEST REPORT ISSUE DATE: 09.03.2021

Personal Dust Sampling Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mines

M/s Tata Steel Limited

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

Sampling Representative Departmental & Contractual Mine Workers

Sl. No	Date of Sampling	Name of the Person Sampled	Occupation/ Designation	Personal Number/ Gate Pass Number	Max. Permissible Value (8hr TWA)	Respirable Particulate matter as RPM(mg/m³) 8-hr TWA
1	05-02-2021	Sudhir Ku Karun	Sorting Labour	TSP/809982/0919	3.0 mg/m^3	1.74
2	07-02-2021	Naresh Singh	Sorting Labour	TSP/751501/0819	(Ref. DGMS (Tech.) (S&T)	2.45
3	16-02-2021	Krushna Lohar	Mine Foreman	TSL (Departmental)	Circular No.01 Dhanbad,	1.83
4	19-02-2021	Jenaram Pingua	Security supervisor	Contractual	Dated 21st January 2010)	2.76
5	23-02-2021	Amit Kumar	Dumper Operator	-	Junuary 2010)	1.4

Note: In all the above samples concentration of silica in the respirable dust was less than 5%

Ecomen Laboratories Pvt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aliganj. Lucknow-226024

Ph.2746282 Fax-2745726

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726 E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQM/04/21 TEST REPORT ISSUE DATE: 02.02.2021

Meteorological Data Monitoring Reports

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location Mines Office

Sample Collected By Using Automatic Weather Station

GT N		Tempe	erature	Rel	ative	Wind	Speed	Wind	Rain fall
SI. No.	Date of Monitoring	(°	C)	Humid	lity (%)	m/	sec	Direction	(mm)
	With the state of	Max.	Min.	Max.	Min.	Max.	Min.	Direction	(IIIII)
1	01.02.2021	32.6	13.4	46.9	14.2	2.8	0	NE	0
2	02.02.2021	32.5	13.5	63.3	15.1	3.4	0	ESE	0
3	03.02.2021	33.7	12.3	61.0	12.4	2.3	0	SE	0
4	04.02.2021	35.5	12.7	63.7	12.6	1.6	0	SE	0
5	05.02.2021	35.3	11.9	58.8	12.5	1.7	0	NSE	0
6	06.02.2021	35.6	10.2	51.2	15.6	1.6	0	NSE	0
7	07.02.2021	36.8	11.0	53.4	12.3	3.2	0	SE	0
8	08.02.2021	37.4	12.8	57.8	12.7	1.6	0	SSE	0
9	09.02.2021	37.7	12.5	75.4	15.4	1.5	0	SE	0
10	10.02.2021	34.4	11.6	63.4	18.5	1.6	0	SE	0
11	11.02.2021	36.2	14.5	74.5	24.9	2.3	0	SSE	0
12	12.02.2021	35.1	13.5	78.4	32.62	2.4	0	SW	0
13	13.02.2021	38.0	16.6	97.3	48.51	1.5	0	NW	0
14	14.02.2021	37.8	15.8	96.2	25.49	1.9	0	NW	0
15	15.02.2021	34.2	15.7	83.9	18.33	0.8	0	SW	0
16	16.02.2021	36.3	17.1	65.1	16.8	3.8	0	SW	0
17	17.02.2021	36.4	17.3	73.8	20.49	7.0	0	SE	0
18	18.02.2021	38.6	18.8	75.7	12.82	8.9	0	SE	0
19	19.02.2021	38.7	18.8	61.2	18.61	13.9	0	SE	0
20	20.02.2021	34.8	20.4	67.9	24.8	16.2	0	SW	0
21	21.02.2021	36.8	19.5	60.19	21.3	19.2	0	SW	0
22	22.02.2021	41.3	19.3	61.23	15.2	21.3	0	SE	0
23	23.02.2021	38.4	18.5	63.2	22.4	3.7	0	SW	0
24	24.02.2021	43.0	20.8	64.54	18.1	3.2	0	SW	0
25	25.02.2021	39.85	18.7	55.56	16.8	4.5	0	SE	0

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

SI. No.	Date of Monitoring	-	erature C)		ative lity (%)		Speed sec	Wind Direction	Rain fall (mm)
		Max.	Min.	Max.	Min.	Max.	Min.		
26	26.02.2021	38.7	15.5	63.01	15.4	18.6	0	SE	0
27	27.02.2021	35.6	16.3	72.34	23.7	19.1	0	NW	0
28	28.02.2021	37.3	19.2	76.13	13.8	3.9	0	NW	0

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/ON/06/21 TEST REPORT ISSUE DATE: 09.03.2021

TEST REPORT OF OCCUPATIONAL/WORKPLACE NOISE MONITORING

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

Instrument Used : Noise Meter (Lutron)/Personal Dosimeter

Sampling Duration : 1hr for Workplace/8hr for Personnel

S.No.	Date of Monitoring	Name of Location/Person	Activity/ Occupation	8-hr TWA dB(A)	DGMS Permissible Limit
1	7-02-2021	Sorting Yard	Maintenance (HEMM)	73.7	85.0
2	11-02-2021	Screen Plant	Supervision	70.6	85.0
3	14-02-2021	Mr. Raju Kumar	Manager, Mining	66.2	85.0
4	18-02-2021	Mr. Naresh Singh	Sorting Lbour	69.3	85.0
5	24-02-2021	Near Stack yard	Stacking of ore	64.2	85.0

Analyst

Authorized Signatory

Ecomen Laboratories i'vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

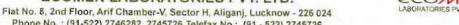
TEST REPORT NO: ECO LAB/AAQ/04/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

AAQMS-1: Near Weigh Bridge (Guruda Pit) Location


Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Date of	Concentration of Pollutant						
	Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m ³)		
1	05.03.2021	70.2	35.2	15.4	23.6	0.42		
2	06.03.2021	64.40	34.3	13.3	25.2	0.44		
3	12.03.2021	71.1	40.7	10.6	26.8	0.36		
4	15.03.2021	62.90	31.5	9.4	27.4	0.47		
5	5 16.03.2021 59.4		29.8	13.6	21.5	0.53		
6	19.03.2021 71.7		35.3	12.8	18.0	0.54		
7	21.03.2021	71.5	37.9	13.3	17.60	0.41		
8	23.03.2021	66.0	34.3	13.9	19.7	0.36		
A	verage	67.15	34.33	13.40	19.20	0.46		
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		100	60	80	80	4.0		
Standard Method		IS: 5182 (Part- 23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS : 5182 (Part- 10)		

^{*}These results are related only to tested items.

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/04/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Weigh Bridge (Guruda Pit)

IS: 5182 Sampling Method

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

				Concen	tration of Pol	lutant		
SI. No.	Date of Monitoring	NH ₃ (μg/m ³)	O ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)
1	05.03.2021	21.3	12.3	<1.0	1.14	<1.0	<4.0	<0.05
2	06.03.2021	18.6	14.5	<1.0	1.16	<1.0	<4.0	<0.05
3	12.03.2021	17.5	13.4	<1.0	1.3	<1.0	<4.0	<0.05
4	15.03.2021	17.3	16.24	<1.0	1.41	<1.0	<4.0	<0.05
5	16.03.2021	14.8	14.4	<1.0	1.02	<1.0	<4.0	<0.05
6	19.03.2021	17.7	17.4	<1.0	1.5	<1.0	<4.0	<0.05
7	21.03.2021	21.6	11.63	<1.0	1.15	<1.0	<4.0	<0.05
8	23.03.2021	20.2	15.17	<1.0	1.18	<1.0	<4.0	<0.05
A	verage	18.58	14.65	-	1.21	-	-	-
notifi Delhi, 1 for A	as per CPCB leation New 18 th Nov, 2009. Ambient air quality	400	180	1	20	6	5	1
Standa	ard Method	APHA 401 (Indophenol)	IS : 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS: 5182 (Part-11)	IS : 5182 (Part-12)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/05/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Date of	Concentration of Pollutant							
	Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)			
1	05.03.2021	69.2	33.7	11.75	23.6	0.41			
2	06.03.2021	71.40	39.4	13.7	19.2	0.35			
3	12.03.2021	70.2	31.9	15.6	18.2	0.39			
4	15.03.2021	65.4	31.43	09.8	14.3	0.38			
5	5 16.03.2021 59.2		29.24	29.24 09.4		0.37			
6	6 19.03.2021 56.52		33.20	12.74	17.34	0.43			
7	21.03.2021	61.64	36.19	10.54	15.40	0.35			
8	23.03.2021	70.62	34.20 14.2		18.30	0.33			
A	verage	62.00	33.21	11.72	16.35	0.37			
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		Limit as per CPCB notification New Delhi, 18 th Nov, 2009. 100 for Ambient air		80	80	4.0			
Standard Method		IS : 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS : 5182 (Part-2) 2001	IS : 5182 (Part-6) 2006	IS : 5182 (Part-10)			

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/05/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Core Zone)

Name of the Mine Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location AAQMS-1: Near Security Gate (Purunapani Pit)

Sampling Method IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By Ecomen Team in presence of TSL's Representative

CT N	D (e		Concentration of Pollutant								
SI. No.	Date of Monitoring	NH ₃ (μg/m ³)	O ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)			
1	05.03.2021	18.0	15.61	<1.0	1.06	<1.0	<4.0	<0.05			
2	06.03.2021	16.46	12.34	<1.0	1.03	<1.0	<4.0	<0.05			
3	12.03.2021	16.42	14.92	<1.0	1.05	<1.0	<4.0	<0.05			
4	15.03.2021	21.41	11.21	<1.0	1.04	<1.0	<4.0	<0.05			
5	16.03.2021	15.62	10.32	<1.0	0.96	<1.0	<4.0	<0.05			
6	19.03.2021	16.54	13.3	<1.0	0.87	<1.0	<4.0	<0.05			
7	21.03.2021	21.68	14.7	<1.0	0.94	<1.0	<4.0	<0.05			
8	23.03.2021	19.27	15.43	<1.0	1.26	<1.0	<4.0	<0.05			
A	verage	18.28	13.44	-	1.01	-	-	-			
notifi Delhi, 1 for A	ns per CPCB cation New 8 th Nov, 2009. mbient air quality	400	180	1	20	6	5	1			
Standa	ard Method	APHA 401 (Indophenol)	IS : 5182 (Part-9) 1974	IS : 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume-I by CPCB	IS: 5182 (Part-11)	IS : 5182 (Part-12)			

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/06/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

IS: 5182 Sampling Method

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative

SI.	Location		Concent	ration of Polluta	nt	
No.	(Date of Monitoring)	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NO ₂ (μg/m ³)	CO (mg/m³)
1	Jaribahal (8.02.2021)	70.4	34.4	14.9	16.5	0.61
2	Balda (10.02.2021)	68.6	31.4	12.7	18.2	0.52
3	Palsa (14.02.2021)	76.4	39.3	16.7	17.3	0.44
4	Jajanga (18.01.2021)	73.5	36.4	15.6	13.8	0.37
A	Average	72.23	35.38	14.98	16.45	0.49
Limit as per CPCB notification New Delhi, 18 th Nov, 2009. for Ambient air quality		100	60	80	80	4.0
Standard Method		IS: 5182 (Part-23) 2006	NAAQM Volume-I by CPCB	IS: 5182 (Part-2) 2001	IS: 5182 (Part-6) 2006	IS: 5182 (Part-10)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQ/06/21 TEST REPORT ISSUE DATE: 09.04.2021

Ambient Air Quality Monitoring Report (Buffer Zone)

: Joda West Iron & Manganese Mine of Name of the Customer

M/s Tata Steel Limited

Sampling Method : IS: 5182

Instrument Used RDS, FDS, CO Analyzer & VOC Sampler

Sample Collected By : Ecomen Team in presence of TSL's Representative

SI.	SI. Location No. (Date of Monitoring)			Conce	ntration of I	Pollutant		
			Ο ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo (a) pyrene (ng/m³)
1	Jaribahal (8.02.2021)	16.4	11.7	<1.0	1.44	<1.0	<4.0	< 0.05
2	Balda (10.02.2021)	19.7	12.6	<1.0	1.36	<1.0	<4.0	< 0.05
3	Palsa (14.02.2021)	18.4	12.5	<1.0	1.39	<1.0	<4.0	< 0.05
4	Jajanga (18.01.2021)	22.3	11.6	<1.0	1.42	<1.0	<4.0	< 0.05
	Average	19.20	12.10	-	1.40	-	-	-
notif Delhi,	as per CPCB fication New 18 th Nov, 2009. Ambient air quality	400	180	1	20	6	5	1
Stand	dard Method	APHA 401 (Indoph enol)	IS: 5182 (Part-9) 1974	IS: 5182 (Part-22) 2004	NAAQM Volume-I by CPCB	NAAQM Volume- I by CPCB	IS: 5182 (Part-11)	IS: 5182 (Part-12)

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/AN/05/21 TEST REPORT ISSUE DATE: 09.04.2021

TEST REPORT OF AMBIENT NOISE LEVEL MONITORING

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

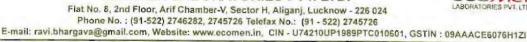
Instrument Used : Noise Meter (Lutron)

S.No.	Date of Monitoring	Name of Location	Category of Zone	<u>Day Time</u> Leq Value in dB(A)	Night Time Leq Value in dB(A)
1	15-03-2021	Near Screen Plant	Industrial	73.2	47.4
2	19-03-2021	Near Mine Office	Industrial	65.9	46.2
3	22-03-2021	Near Sorting Yard	Industrial	71.4	45.4

Noise (Ambient Standard) as per The Noise Pollution (Regulation and Control) Rules, 2000

Area Co	ode Category of area		Limit in dB (A) Leq	
	D	ay Time		Night Time
A	Industrial Area	75		70
В	Commercial Area	65		55
C	Residential Area	55		45
D	Silence Zone	50		40
Note:				
1.	Day time is reckoned in between 6:00 AM and 10):00 PM.		

2. Night time is reckoned in between 10:00 PM and 6:00 AM


3. Silence zone is defined as area up to 100m around such premises as hospitals,

educational institutions & courts. The silence zones are to be declared by a competent authority.

 Mixed categories of areas should be declared as one of the four above-mentioned categories by the competent authority and the corresponding standard shall apply.

Analyst

Authorized Signatory

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/12 TEST REPORT NO: ECOLAB/Stack1/01/21 TEST REPORT ISSUE DATE: 09.04.2021

TEST REPORT OF FLUE GAS EMISSIONS*

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Date of Sampling 11.03.2021

Sample Collected by : Ecomen Team in presence of TSL's Representative

Source of Emission : Exhaust Emission from DG Set

Sampling Method IS: 11255

Instrument Used Stack Monitoring Kit

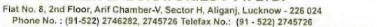
Details of Stack

Material of Construction M.S.

Stack Attached to DG Set-01 (Camp)

Capacity 100 KVA

Stack Height:


i) Above the Platform/Roof (m) 10.0 ii) Above the Ground Level (m) 15.0 Stack Top Circular Inside Diameter of Stack (m) 0.0889

(at sampling point)

Cross Sectional Area of Duct/Stack (m²) 0.0061 Ambient Air (°C) 18.0 Flue Gas Temperature (°C) 174.0 Exit Velocity of Gas (m/sec.) 9.25 Flow Rate (Nm3/ sec.) 0.037 Type of Fuel **HSD** Quantity of Fuel Consumption (lit/hr) 20-22

Sl. No.	Tests Conducted	Method	Pollutant Concentration in (At 15% O_2 Correction) in $gm/Kw-Hr$	Standards as per CPCB in gm/Kw-Hr
1.	Particulate Matter (PM)	IS:11255 (Part-1)	0.055	0.2
2.	Sulphur Dioxide (SO ₂)	IS:11255 (Part-2)	0.032	-
3.	Nitrogen Dioxide (NO _x)	IS:11255 (Part-7)	0.056	4.0
4.	Hydrocarbon (HC)	IS:13270	1.17	(NOx+HC)
5.	Carbon Monoxide (CO)	IS:13270	1.13	3.5

^{*}The result is related only to tested item.

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/01/21 TEST REPORT ISSUE DATE: 09.04.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

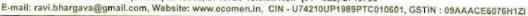
Date of Sampling : 9/3/2021 Date of Sample Receiving : 12/3/2021

Packing of Sample : As per requirement
Date of Analysis : 12/3/2021-16/3/2021

Source of Sample : Supply Water @ Sorting Yard

SI.	TESTS	PROTOCOL	RESULT	Detection		INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	<5.0 Agreeable	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017,2150 B		Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	рН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.34	2.0-12	6.5-8.5	No Relax.	
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	170	10-10000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	146	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	156.5	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	43.4	5 – 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	12.6	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	15.8	5-1000	250.0	1000.0	
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	21.6	5-200	200.0	400.0	
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.3	5-100	45.0 (Max)	No Relax.	
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.42	0.02-10	1.0	1.5	
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5	
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.026	0.02-50	0.3 (Max)	No Relax.	
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30	
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.	
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2	
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax	
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax	
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.	
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.08	0.02-50	5	15	
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax	
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.	
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0	
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax	
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002	
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0	
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0	
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent	
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent	
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-	
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation	

*These results are related only to item tested.


BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/07/21 TEST REPORT ISSUE DATE: 09.04.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 8/3/2021 Date of Sample Receiving : 12/3/2021

Packing of Sample : As per requirement
Date of Analysis : 12/3/2021-16/3/2021

Source of Sample : Borewell Near Highschool (Jajang)

Sl.	TESTS	PROTOCOL	RESULT	Detection	INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable
4.	рН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.38	2.0-12	6.5-8.5	No Relax.
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	170	10-10000	500	2000
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	141.3	5-1500	200	600
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	154.6	5-1500	200.0	600.0
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	42.5	5 - 1000	75.0	200.0
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	12.4	5-1000	30.0	100.0
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	16.5	5-1000	250.0	1000.0
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	29.4	5-200	200.0	400.0
13.	Nitrate Nitrogen as NO3 (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	2.5	5-100	45.0 (Max)	No Relax.
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.46	0.02-10	1.0	1.5
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.08	0.02-50	0.3 (Max)	No Relax.
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.064	0.02-50	5	15
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002
29.	Anionic Detergents as MBAS (mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent
33.	Fecal Coliform(MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation

*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/09

TEST REPORT NO: ECO LAB/DW/12/21 TEST REPORT ISSUE DATE: 09.04.2021

ecoMen

TEST REPORT OF DRINKING WATER*

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Address of the Customer : Tiringpahar Iron & Manganese Mine

Sampling Method : APHA/ IS: 3025 Sample Collected by : Swaraj Swain Sample Quantity : As per requirement.

Date of Sampling : 8/3/2021 Date of Sample Receiving : 12/3/2021

Packing of Sample : As per requirement
Date of Analysis : 12/3/2021-16/3/2021

Source of Sample : Borewell Near Joribar Village

SI.	TESTS	PROTOCOL	RESULT	Detection		INDIAN STANDARDS as per IS 10500:2012	
No.				Range	Acceptable Limit	Permissible Limit	
1.	Colour (Hazen unit)	APHA, 23 rd Ed. 2017, 2120 B	< 5.0	5-100	5.00	15.0	
2.	Odour	APHA, 23rd Ed. 2017,2150 B	Agreeable	Qualitative	Agreeable	Agreeable	
3.	Taste	APHA, 23rd Ed. 2017,2160 A+B	Agreeable	Qualitative	Agreeable	Agreeable	
4.	рН	APHA, 23rd Ed. 2017, 4500 H+A+B	7.28	2.0-12	6.5-8.5	No Relax.	
5.	Turbidity as (NTU)	APHA, 23rd Ed. 2017, 2130-A+B	BDL	1-100	1.0	5.0	
6.	Total Dissolved Solids as TDS (mg/l)	APHA, 23rd Ed. 2017,2540-C	213	10-10000	500	2000	
7.	Alkalinity (mg/l)	APHA, 23rd Ed. 2017,2320 A+B	143	5-1500	200	600	
8.	Total Hardness as CaCO ₃ (mg/l)	APHA, 23rd Ed. 2017,2340 A+C	182	5-1500	200.0	600.0	
9.	Calcium as Ca (mg/l)	APHA, 23rd Ed. 2017, 3500 Ca A+B	41.3	5 – 1000	75.0	200.0	
10.	Magnesium as Mg (mg/l)	APHA, 23rd Ed. 2017, 3500 Mg A+B	15.4	5-1000	30.0	100.0	
11.	Chloride as Cl (mg/l)	APHA, 23rd Ed. 2017,4500 Cl A+B	29.6	5-1000	250.0	1000.0	
12.	Sulfate as SO4 (mg/l)	APHA, 23rd Ed. 2017,4500 SO42- E	39.8	5-200	200.0	400.0	
13.	Nitrate Nitrogen as NO ₃ (mg/l)	APHA, 23rd Ed. 2017, 4500 NO3- B	8.6	5-100	45.0 (Max)	No Relax.	
14.	Fluorides as F (mg/l)	APHA, 23rd Ed. 2017,4500-C	0.58	0.02-10	1.0	1.5	
15.	Copper as Cu (mg/l)	APHA, 23rd Ed. 2017, 3111A+C	BDL	0.04-5	0.05	1.5	
16.	Iron as Fe (mg/l)	APHA, 23rd Ed. 2017, 3500 Fe B	0.027	0.02-50	0.3 (Max)	No Relax.	
17.	Manganese as Mn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-5	0.10	0.30	
18.	Mercury as Hg (mg/l)	APHA, 23rd Ed. 2017, 3112 A+B	BDL	0.001-2	0.001(Max)	No Relax.	
19.	Aluminium as Al (mg/l)	APHA, 23rd Ed. 2017, 3500 Al A+B	BDL	0.02-100	0.03 (Max)	0.2	
20.	Cadmium as Cd (mg/l)	APHA, 23rd Ed. 2017,3111 A+B	BDL	0.002-2	0.003(Max)	No Relax	
21.	Arsenic as As (mg/l)	APHA, 23rd Ed. 2017, 3114 C	BDL	0.01-2	0.01(Max)	No Relax	
22.	Lead as Pb (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.02-5	0.01	No Relax.	
23.	Zinc as Zn (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	0.31	0.02-50	5	15	
24.	Selenium as Se (mg/l)	APHA 23 rd Ed.2017 3500 Se-C	BDL	0.01-10	0.01(Max)	No Relax	
25.	Chromium as Cr+6 (mg/l)	APHA, 23rd Ed. 2017, 3111 A+B	BDL	0.05-20	0.05(Max)	No Relax.	
26.	Boron as B (mg/l)	APHA, 23rd Ed. 2017, 4500 B A+C	BDL	0.2-2	0.5	1.0	
27.	Cyanide as CN (mg/l)	APHA, 23rd Ed. 2017, 4500 CN-A+C	BDL	0.02-5	0.05	No Relax	
28.	Phenolic Compounds as C ₆ H ₅ OH (mg/l)	APHA, 23rd Ed. 2017, 5530 A+C	BDL	1-5	0.001	0.002	
29.	Anionic Detergents as MBAS(mg/l)	APHA, 23rd Ed. 2017, 5540 A+C	BDL	0.01-5	0.2	1.0	
30.	Free Residual Chlorine (mg/l)	APHA, 23rd Ed. 2017, 4500-Cl B	BDL	0.1-5	0.20	1.0	
31.	Total coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, A+ B	Absent	1.8	Absent	Absent	
32.	E-Coli (Nos/100)	APHA, 23rd Ed. 2017, 9221 A+ F	Absent	1.8	Absent	Absent	
33.	Fecal Coliform (MPN/100 ml)	APHA, 23rd Ed. 2017, 9221 E	Absent	1.8	-	-	
34.	Pesticide	APHA, 23rd Ed. 2017, 6630 B&C	BDL	2-10	No Relaxation	No Relaxation	

*These results are related only to item tested.

BDL = Below Detection Limit

Analyst

Authorized Signatory

Ecomen Laboratories i vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj. Lucknow-226024 Ph.2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10 TEST REPORT NO: ECO LAB/DUSTFALL/06/21 TEST REPORT ISSUE DATE: 09.04.2021

Dust Fall Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location DF-1: Near Sorting Yard (Guruda)

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

SI. No.	Duration of		Concentration of Pollutant (t/km2/month)							
	Monitoring	Total Dust Fall (t/km2/month) Analysis Results								
1	01.03.2021		Co (%)	Ni (%)	Hg (%)	As (%)				
	To 31.03.2021	0.76	<0.001	<0.001	<.001	<0.001				

^{*}This result is related only to tested item/sample.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/01/21 TEST REPORT ISSUE DATE: 09.04.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location 50 mtr from Haul Road (Guruda)

Date of Sampling 17.03.2021

Sampling Method IS: 5182(Part 23): 2006

Sample Collected By Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	920	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	193	500 mg/m ³ at 25+5 m from the source of generation

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024
Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04

TEST REPORT NO.: ECO LAB/Fugitive/02/21 TEST REPORT ISSUE DATE: 09.04.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : 100 mtr from Screen Plant (Guruda)

Date of Sampling : 19.03.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	850	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS: 5182-Part-4	μg/m³	145	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

Ecomen Laboratories 3 vt. Ltd. Hat No.8 Second Floor Arif Chamber Sector-H. Aliganj, Lucknow-226024 Ph.2746282 Fax-2745726

LABORATORIES PVT, LTD,

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

mail: ravi.bhargaya@gmail.com, Website: www.ecomen.in, CIN, 1/242101191999

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO.: ECO/QS/D/FORMAT/04 TEST REPORT NO.: ECO LAB/Fugitive/05/21

TEST REPORT ISSUE DATE: 9.04.2021

TEST REPORT OF FUGITIVE EMISSION MONITORING

Name of the Customer : Joda West Iron & Manganese Mine of

M/s Tata Steel Limited

Location : Near Sorting Yard (Guruda)

Date of Sampling : 25.03.2021

Sampling Method : IS: 5182(Part 23): 2006

Sample Collected By : Ecomen Team in presence of TSL's Representative

Sl. No.	Test conducted	Standard Method	Unit	Result	Max. Prescribed Standard as per G.S.R. 46(E) dtd. 3 rd Feb 2006 (MoEF&CC)
1.	Suspended Particulate Matter (SPM)	IS : 5182-Part-4	μg/m³	745	1200 mg/m ³ at 25+5 m from the source of generation
2.	Respirable Particulate Matter (RPM)	IS : 5182-Part-4	μg/m³	152	500 mg/m ³ at 25+5 m from the source of generation

Analyst

Authorized Signatory

Ecomen Laboratories I'vt. Ltd. Hat No.8 Second Floor Arti Chamber Sector-H. Aligan). Lucknow-226024 Ph. 2746282 Fax-2745726

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 225 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravl.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/01/21 TEST REPORT ISSUE DATE: 09.04.2021

Personal Dust Sampling Analysis Report

Name of the Customer Tiringpahar Iron & Manganese Mines

M/s Tata Steel Limited

Sampling Method IS: 5182

Sample Collected By Ecomen Team in presence of TSL's Representative

Sampling Representative Departmental & Contractual Mine Workers

Sl. No	Date of Sampling	Name of the Person Sampled	Occupation/ Designation	Personal Number/ Gate Pass Number	Max. Permissible Value (8hr TWA)	Respirable Particulate matter as RPM(mg/m³) 8-hr TWA
1	08-03-2021	Sudhir Ku Karun	Sorting Labour	TSP/809982/0919	3.0 mg/m^3	1.68
2	10-03-2021	Naresh Singh	Sorting Labour	TSP/751501/0819	(Ref. DGMS (Tech.) (S&T)	2.20
3	14-03-2021	Krushna Lohar	Mine Foreman	TSL (Departmental)	Circular No.01 Dhanbad,	1.64
4	16-03-2021	Jenaram Pingua	Security supervisor	Contractual	Dated 21st January 2010)	2.3
5	19-03-2021	Amit Kumar	Dumper Operator	-	Junuary 2010)	2.45

Note: In all the above samples concentration of silica in the respirable dust was less than 5%

^{*}These results are related only to tested items.

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No.: (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726
E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/10

TEST REPORT NO: ECO LAB/AAQM/04/21 TEST REPORT ISSUE DATE: 09.04.2021

Meteorological Data Monitoring Reports

Name of the Customer Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Location Mines Office

Sample Collected By Using Automatic Weather Station

		Tempe	rature	Rel	ative	Wind	Speed	****	D. '. C. II
SI. No.	Date of	(°	C)	Humid	lity (%)	m/	'sec	Wind	Rain fall
	Monitoring	Max.	Min.	Max.	Min.	Max.	Min.	Direction	(mm)
1	01.03.2021	36.4	15.4	46.9	13.2	1.3	0	SE	0
2	02.03.2021	35.6	17.5	62.3	13.1	2.5	0	NSE	0
3	03.03.2021	36.4	18.3	59.0	13.4	5.3	0	NS	0
4	04.03.2021	37.5	16.7	58.7	12.5	1.3	0	NW	0
5	05.03.2021	35.4	17.9	56.8	12.7	1.9	0	NW	0
6	06.03.2021	35.4	19.3	49.2	15.03	1.8	0	SW	0
7	07.03.2021	36.4	15.4	61.4	13.6	3.4	0	SW	0
8	08.03.2021	36.8	17.8	52.8	12.74	3.2	0	SE	0
9	09.03.2021	37.2	18.7	75.8	15.45	1.8	0	SW	0
10	10.03.2021	36.9	13.9	63.0	18.5	1.9	0	SE	0
11	11.03.2021	36.9	15.8	74.6	24.59	2.1	0	SSE	0
12	12.03.2021	35.4	15.7	77.4	32.62	2.3	0	SW	0
13	13.03.2021	37.4	16.4	94.3	48.51	1.8	0	SE	0
14	14.03.2021	33.8	15.8	94.2	25.49	1.4	0	NW	0
15	15.03.2021	34.5	15.5	81.9	18.33	0.5	0	SW	0
16	16.03.2021	36.2	17.2	66.1	16.8	1.5	0	ESE	0
17	17.03.2021	36.3	17.4	72.8	20.49	1.4	0	ESE	0
18	18.03.2021	38.4	14.8	75.7	12.82	0.7	0	ESE	0
19	19.03.2021	38.5	13.8	61.2	18.61	1.5	0	SE	0
20	20.03.2021	39.4	25.4	67.9	24.8	1.6	0	SW	0
21	21.03.2021	36.8	23.5	64.19	21.3	1.2	0	SW	0
22	22.03.2021	37.4	20.3	65.23	15.2	1.3	0	SE	0
23	23.03.2021	38.42	20.6	68.2	22.4	2.7	0	SE	0
24	24.03.2021	43.01	19.8	69.54	18.1	3.2	0	SSW	0
25	25.03.2021	41.5	18.7	55.56	16.8	4.5	0	ESE	0
26	26.03.2021	37.7	19.5	62.01	15.4	4.6	0	ESE	0
27	27.03.2021	39.6	21.3	68.34	15.7	1.1	0	ESE	0

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024

Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN : 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

SI. No.	Date of Monitoring	Temperature (°C)		Relative Humidity (%)		Wind Speed m/sec		Wind Direction	Rain fall (mm)
	b	Max.	Min.	Max.	Min.	Max.	Min.	Direction	()
28	28.03.2021	40.3	20.2	66.13	12.8	1.8	0	NE	0
26	29.03.2021	40.2	18.43	69.36	15.4	1.6	0	NE	0
30	30.03.2021	42.3	21.4	33.81	11.8	3.4	0	NE	0
31	31.03.2021	41.5	21.7	25.59	15.4	2.3	0	SW	0

^{*}These results are related only to tested items.

Authorized Signatory

Flat No. 8, 2nd Floor, Arif Chamber-V, Sector H, Aliganj, Lucknow - 226 024 Phone No. : (91-522) 2746282, 2745726 Telefax No.: (91 - 522) 2745726

E-mail: ravi.bhargava@gmail.com, Website: www.ecomen.in, CIN - U74210UP1989PTC010601, GSTIN: 09AAACE6076H1ZI

An approved Laboratory from Ministry of Environment, Forest and Climate Change, Govt. of India, New Delhi

FORMAT NO. ECO/QS/FORMAT/13

TEST REPORT NO: ECO LAB/ON/06/21 TEST REPORT ISSUE DATE: 09.04.2021

TEST REPORT OF OCCUPATIONAL/WORKPLACE NOISE MONITORING

Name of the Customer : Tiringpahar Iron & Manganese Mine of

M/s Tata Steel Limited

Sample Collected By : Ecomen Team using Integrated Sound Level Meter

Instrument Used : Noise Meter (Lutron)/Personal Dosimeter

Sampling Duration : 1hr for Workplace/8hr for Personnel

S.No.	Date of Monitoring	Name of Location/Person	Activity/ Occupation	8-hr TWA dB(A)	DGMS Permissible
					Limit
1	8-03-2021	Sorting Yard	Maintenance (HEMM)	73.4	85.0
2	11-03-2021	Screen Plant	Supervision	67.8	85.0
3	15-03-2021	Mr. Raju Kumar	Manager, Mining	63.5	85.0
4	17-03-2021	Mr. Naresh Singh	Sorting Lbour	70.7	85.0
5	19-03-2021	Near Stack yard	Stacking of ore	64.4	85.0

Analyst

Authorized Signatory