

Ref.No.: MGM/P&E/373/20

Date: 01 | 12 2020

To. The Additional Director, Ministry of Environment and Forest & Climate Change. Eastern Region Office, A/3, Chandrasekharpur, Bhubaneswar-751023

Subject: Submission of half-yearly compliance report on the stipulated environmental clearance terms and conditions in respect of Bamebari Iron and Manganese Mine of M/s TATA Steel Ltd., for the period from October'2019 to March'2020.

Reference:

- 1) MoEF Letter Ref No: J-11015/85/2003-IA. II(M) DATED 17th Nov 2005.
- 2) MoEF&CC's notification vide S.O-5845 (E), dt. 28th Nov 2018.

Respected Sir,

We are herewith submitting the six-monthly compliance report on the status of the implementation of the conditions stipulated in environmental clearance awarded to us vide MoEF Letter Ref No: - J-11015/85/2003-IA. II(M) DATED 17.11.2005 in respect of Bamebari Iron and Manganese Mine of M/s TATA Steel Ltd. for the period from April'2020 to Sep'2020 for your kind perusal.

This is in reference to the MoEF&CC's notification vide S.O-5845, dt. 28th Nov 2018, the six-monthly compliance report is being submitted only in soft copy mode, shared with your good office at e-mail @ roez.bsr-mef@nic.in.

We believe the above submission is in order.

Thanking you,

Yours faithfully,

F: TATA STEEL LTD.

Agent & Head

Manganese Group of Mines

Ferro Alloys Mineral Division

Encl: As above.

Copy To:

- 1) Zonal Office Kolkata, Central Pollution Control Board, South end Conclave, Block 502, 5th and 6th Floors, 1582 Rajdanga Main Road, Kolkata, West Bengal 700107.
- 2) The Member Secretary, State Pollution Control Board, A/118, Nilakantha Nagar, Bhubaneswar, Odisha-751012.
- 3) The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Odisha-758001.

Half-Yearly Compliance Report

On

Environmental Clearance Conditions

(MoEF Letter Ref No: - J-11015/85/2003-IA. II(M) DATED 17.11.2005)

Period: April'2020 - Sep'2020

Submitted By: Bamebari Iron & Manganese Mine M/s. Tata Steel Limited

At/Po: Bamebari, Via-Joda

District- Keonjhar, Odisha -758034

Table of Contents

<u>S.No</u> .	<u>Title/Chapter</u>	Page No.
1.	Compliance Status to EC	3-13
2.	Annexure-I-Environmental Monitoring (April'20 to Sep'20) -from 14

page onwards

Six Monthly EC Compliance Report-Bamebari Iron & Manganese Mine, M/s Tata Steel Limited for Apr'20 – Sep'20 Compliance to the Environment Clearance Letter No: -11015/85/2003-IA. II(M) DATED 17.11.2005 in respect of Expansion of Bamebari Manganese Mines of M/s Tata Steel Limited for the enhancement of production capacity to a capacity of 0.83LTPA, in villages Bamebari, Boneikala and Joribar, Tehsil Barbil, District-Keonjhar, Odisha

Table. A. Specific Condition:

Sl. No	Specific Condition	Compliance Status (April'20 to Sep'20)
(i)	Mining shall not be undertaken in areas of forestland within the lease without the necessary approvals / forestry clearance.	We have obtained Forest Clearance vide MoEF's letter No 8-72/2004-FC dt 25.01.2007 over an area of 145.329 ha of forest land for Bamebari Iron & Mn. Mines. Further, in the year 2015, MoEF notified the legal status of Sabik Kisam of Forest land as on 25.10.1980) as forest land, vide Circular No. F.No.8-78/1996-FC, dated.10.03.2015, due to which applicability of forest clearance over an area of 66.126 ha. of prevailing nonforest land becomes a legal requirement. Accordingly, forest diversion proposal over an area of 303.066 ha (Sabik forest & Balance forest) has been applied on 19.06.2016, the same is under process. Portion of the land (non-forest prior to the circular of 2015) were already broken up as per the prevailing statute. The mining operation and allied activities are confined within the approved diverted area only.
(ii)	Topsoil should be stacked properly with proper slope at earmarked site(s) with adequate measures and should be used for reclamation and rehabilitation of mined out area.	Complied. No top soil generated during the period April'20 to Sep'20. Top Soil recovered during mining operation shall be concurrently being used for the development of plantation activities.
(iii)	OB and other wastes should be stacked at earmarked sites only and should not be kept active for long periods of time. Plantation should be taken up for soil stabilization along the slopes of the dump and terraced after every 5-6 m of height and overall slope angle shall be maintained not exceeding 28°. Sedimentation pits shall be constructed at the corners of the garland drains. Retention/toe walls shall be provided at the base of the dumps.	Agreed & Complied. OB and other wastes are being dumped as per Scheme of Mining approved by Indian Bureau of Mines. The dump is terraced at every 10m and overall slope is maintained well within 28° as per approved Scheme of Mining. Dump stabilization is carried out by means of Vertiber Plantation followed by plantation of native forestry species saplings. During April'20 to Sep'20, Plantation of around 700 Nos of saplings have been completed. Total plantation for FY 2020-21 is targeted at around 8000Nos. Local forest species such as Gambhari, Neem, Mahaneem, Sisam, Karanj, Sal, etc. shall be planted. The retaining wall and garland drain with sedimentation pit have been provided along the periphery of all the dumps.

Sl. No	Specific Condition	Compliance Status (April'20 to Sep'20)
		De-silting of the drains and sedimentation pits are ensured every year before the onset of monsoon.
(iv)	Minerals rejects shall be stacked separately at earmarked site/dump only.	Complied The mineral rejects generated during manual processing of manganese ore (i.e. sorting, dressing and sizing) has been stacked separately at earmarked site.
(v)	Catch drains and siltation ponds of appropriate size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The drains should be regularly desilted and maintained properly. Garland drains (size, gradient & length) and sump capacity should be designed keeping 50% safety margin over and above the peak sudden rainfall and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material. Storm water return system should be provided. Storm water should not be allowed to go to the effluent treatment plant during high rainfall/super cyclone period. A separate storm water sump for this purpose should be created. Dimension of retaining wall at the toe of	Complied. Existing catch drains and garland drains are covering the entire dump slope at low lying part. Size, gradient and length of the drains are adequate to take care of the peak flow. A series of check dams and settling pits have been provided for proper settlement of suspended solid in surface runoff. The garland drain, catch drains and sedimentation pits are periodically de-silted and maintained properly every year before the onset of monsoon.
	OB dumps and benches within the mine to check run-off and siltation should be based on the rainfall data.	Retaining wall and garland drain with the dimension as specified below, are provided to prevent the siltation and check the run-off. Dimension of the Retaining Wall: Height – 1 to 1.2 mtr. Width – 1 mtr. Dimension of the Garland Drain: Depth – 1.20 to 1.5 mtr. Width – 1 to 1.2 mtr. This status is similar to the status as submitted during Oct'19 to March'20, In the current monsoon only maintenance of the existing structures has been ensured.
(vii)	Trace Metals such as Ni, Co, As and Hg should be analyzed in dust fall and soil samples for at least one year during summer, monsoon and winter seasons. If concentrations of these metals are found below the standards then with prior approval of MOEF this specific monitoring could be discontinued.	Complied. Environmental Monitoring has been conducted vide M/s Visiontek Consultancy, a Bhubaneswar based agency till June'20.
(viii)	Mineral and OB transportation shall be in trucks/dumpers covered with tarpaulins.	<u>Complied.</u>

Sl. No	Specific Condition	Compliance Status (April'20 to Sep'20)
	Vehicular emissions should be kept under control and regularly monitored. Suitable measures should be taken to check fugitive emissions from haulage roads & transfer points, etc.	The trucks are being covered with tarpaulin during dispatch of manganese ore from mine to Ferro Alloys Plant and Railway Siding at Joda. OB is being transported by shovel – dumper combination from mine face to dump yard, and since the movement is restricted within the mining area and frequent in nature thus covering by means of tarpaulins is not practiced and feasible from safety point of view. All the trucks meant for transportation of mineral from mine to our captive plant & Railway Siding at Joda is bearing the "Pollution under Control' certificate. Haul road and other areas having potential for producing air borne dust are sprinkled regularly with help of mobile sprinklers. Beside this fixed sprinkler has also been provided in main haul road in Joribar block of Ramebari Iron and Manganese Mine.
(:)	A green belt of adequate width should be	block of Bamebari Iron and Manganese Mine. Complied.
(ix)	raised by planting the native species around ML area. Plantation should also be carried out along roads, OB dump sites etc. in consultation with the local DFO <i>I</i> Agriculture Department. The density of the trees should be not less than 2500 plants per ha.	Plantation is an integral part of the progressive mine closure plan approved by Indian Bureau of Mines. Greenbelt development is practiced in line with the Safety Zone norms of the Forest statute. • We have planted about 700 saplings during the period from April'20 to Sep'20. We have a target of 8000nos of saplings for the FY 2020-21. The plantation shall include the local species forest species like Gambhari, Sal, Neem, Mahaneem, Sisam, Karanj, etc.
(x)	Groundwater shall not be used for mine operations. Prior approval of CGWA shall be obtained for using groundwater.	Complied NOC from Central Ground Water Authority obtained vide NOC No. CGWA/NOC/MIN/ORIG/2018/3899, dt. 09.08.2018 for the drawl of 130cum/day and not exceeding 47450 cum in a year of ground water was valid till 22nd July 2020. Renewal of NOC has been applied within the due date. Site Inspection by the nodal officer has been completed and renewed NOC is awaited.
(xi)	Mining will not intersect groundwater. Prior permission of the MOEF and CGWA shall be taken to mine below water table.	Complied It was not envisaged that, Mining would intersect the ground water table as the Ground water being at lower level in comparison to prevailing maximum quarry depth, However in Joribar block ground water seepage of very minimal potential was evidenced in the current financial year. During the renewal of NOC, it shall be regularised as per the applicability of ground water seepage.
(xii)	Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells	Ground water table is much below the existing mine workings because of mining operations are confined

Sl. No	Specific Condition	Compliance Status (April'20 to Sep'20)
	and constructing new piezometers. The monitoring should be done for quantity four times a year in pre-monsoon (April / May), monsoon (August). Post-monsoon (November) and winter (January) seasons and for quality in May. Data thus collected should be submitted to the MoEF & CGWA quarterly.	at hilly topography only. However, ground water level & quality at existing well at nearby villages are being monitored. One Piezometer has been fitted with telemetric system for real-time surveillance of ground water level and the user ID & Password has been shared with CGWA. Environmental monitoring was ensured till June'20.
(xiii)	Regular monitoring of ground water level and quality should be carried out by	Complied Ground water level & quality at existing well at nearby
	establishing a network of existing wells and constructing new piezometers. The monitoring should be done for quantity four times a year in pre-monsoon (April / May), monsoon (August). Post-monsoon (November) and winter (January) seasons and for quality in May. Data thus collected should be submitted to the MoEF & CGWA quarterly.	villages are being monitored. For real-time monitoring of ground water level one telemetric system has also been established. User ID and Password for the telemetric system has been shared with CGWA. Environmental monitoring was ensured till June'20.
(xiv)	Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water downstream and in ground water at lower elevations from mine area, shall be periodically monitored in consultation with the OSPCB and State Ground Water Board. Suitable treatment measures shall be undertaken in case levels are found to be higher than permissible limits.	Complied. Environmental monitoring was ensured till June'20.
(xv)	"Consent to Operate" should be obtained from SPCB before expanding mining activities.	Complied. Consent to operate has been obtained from Odisha State Pollution Control Board vide Consent No. 117 vide letter no. 8917/ IND-I-CON-189 dated 29.08.2019, valid up to 31.03.2021.
(xvi)	A Conservation Plan for conservation of endangered fauna including the Indian Elephant found in and around the mine area shall be prepared and implemented in consultation with identified agencies/institutions and with the State Forest Department. The Plan should be dovetailed with that prepared / under implementation / proposed for the endangered fauna found in the Reserve Forest in the buffer zone of the project site. The costs for the specific activities/taslcs should be earmarked in the Conservation Plan and shall not be diverted for any other purpose. Year.wise status of the implementation of the Plan and the expenditure thereon should be	Complied. A regional wild life conservation plan has been prepared by the state forest department for Bonai & Keonjhar divisions. Towards the implementation cost, we have deposited the fund as assessed by the divisional forest officer. Details is as follows: 1. Rs. 45,05,554/- on 14.12.2005 2. Rs. 47,74,446/- on 27.03.2013 3. Rs. 10672000/- on 24.02.2015 Apart from this, we have also deposited an amount of Rs. 4,69,81,000/- on 15.02.2018 for the implementation of site Specific wildlife management plan, prepared by state forest department.

Six Monthly EC Compliance Report-Bamebari Iron & Manganese Mine, M/s Tata Steel Limited for Apr'20 – Sep'20

Sl. No	Specific Condition	Compliance Status (April'20 to Sep'20)
	reported to the Ministry of Environment	
	& forests, RO, Bhubaneshwar.	
(xvii)	A Final Mine Closure Plan along with	<u>Complied.</u>
	details of Corpus Fund should be	Progressive Mine Closure Plan for the period 2018-19
	submitted to the Ministry of Environment	to 2019-20 has been approved by Indian Bureau of
	& Forests 5 years in advance of final mine	Mines.
	closure for approval.	The final mine closure plan along with details of
		Corpus fund will be submitted to the Ministry of
		Environment & Forests 5 years in advance of final
		mine closure for approval.

Table. B General Conditions

Sl. No	General Condition	Compliance Status (Oct'19 to March'20)
i.	No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests.	Complied. No change in mining technology and scope of working has been made at the mine. If any changes proposed in technology and scope of workings, prior approval shall be sought from Ministry of Environment & Forests.
ii.	No change in the calendar plan including excavation, quantum of manganese ore and waste should be made.	Complied. Calendar plan as approved in the mining scheme by Indian Bureau of Mines is complied.
iii.	Four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RPM. SPM, SO2, NOx. monitoring. Location of the stations should be decided based on the meteorological data, topographical features, and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board. Data on ambient air quality (RPM, SPM, SO2 & NOx.) should be regularly submitted to the Ministry including its Regional office at Bhubaneshwar and the State Pollution Control Board <i>I</i> Central Pollution Control Board once in six. Months.	Complied. Environmental monitoring was ensured till June'20.
iv.		Complied. Wet drilling is followed. Controlled blasting technique with NONEL is in practice. Ground vibration for the Peak Particle Velocity is also monitored for major blasts.

v.	Fugitive dust emissions from all the	Complied.
	sources should be controlled regularly monitored and data recorded properly. Water spraying arrangements on haul roads, wagon loading, dumpers/ trucks, loading & unloading points should be provided and properly maintained.	Effective water sprinkling by mobile water tanker is carried out for haul roads. Fixed sprinkler based dust suppression system is also in place for Joribar block. Environmental monitoring was ensured till June'20.
vi.	Adequate measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in blasting and drilling operations, operations of HEMM should be provided with ear plugs/ muffs.	Complied. Ear plugs & Ear muffs are provided to the workers working in drilling operations & DG operations. Environmental monitoring was ensured till June'20.
vii.	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31 st December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	Complied. Oil-Water separation system has been provided at workshop and working effectively. Samples both before treatment and after treatment are collected and analysed on monthly basis. Environmental monitoring was ensured till June'20
viii.	Environmental laboratory should be established with adequate number and type of pollution monitoring and analysis equipment in consultation with the State Pollution Control Board.	Complied. To ensure an independent environmental monitoring, sampling, analysis and reporting of the environmental quality parameters was outsourced to a third-party M/s Visiontek Consultancy, a Bhubaneswar based agency having MoEF&CC authorization for the period till June'20.
ix.	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects. Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	Complied. Use of dust masks is mandatorily followed for all the workers engaged in dusty areas. Employees are undergoing Periodical Medical Examination such as lungs related tests and audiometry. Significant emphasis is also provided on the safety and awareness of the personnel and ensured by means of daily safety talk, pre-start talk, implementation of Safe Operating Procedure, assessment of Hazards and safety visit cum line walk based initiatives. The initial and periodical examination includes blood hematology, blood pressure, detailed cardiovascular assessment, neurological examination etc.
X.	A separate environmental management cell with suitable qualified personnel should be set up under the control of a Senior Executive, who will report directly	Complied A central environmental management cell has been established, wherein an environmental manager ensures the implementation of environmental

Six Mon	thly EC Compliance Report-Bamebari Iron & N	Manganese Mine, M/s Tata Steel Limited for Apr'20 – Sep'20
	to the Head of the Organization.	management plan at the mining sites and reports to the Head of the Chief Environment via Head, Environment Management who in turn reports to the Head of the Organisation.
xi.	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry and its Regional Office located at Bhubaneshwar.	Complied Funds allocated for environmental management are earmarked in separate cost center maintained for the purpose.
xii.	The Regional Office of this Ministry located at Bhubaneshwar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer (s) of the Regional Office by furnishing the requisite data/information/monitoring reports	Complied. We are extending full co-operation to the officers of the Regional Office by furnishing the requisite data / information / monitoring reports.
xiii.	A copy of clearance letter will be marked to the concerned Panchayat/local NGO, if any, from whom suggestion/representation has been received while processing the proposal.	Complied. Copy of the clearance letter marked to Sarpanch, Gram Panchayat, Palasa on 12.01.2006.
xiv.	The State Pollution Control Board should display a copy of the clearance letter at the Regional Office, District Industry Centre and Collector's Office/Tehsildar's Office for 30 days.	Applicable for the State Pollution Control Board, Odisha.
xv.	The project authorities should advertise at least in two local newspapers widely circulated around the project, one of which shall be in the vernacular of the locality concerned within seven days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and may also be seen at Web Site of the Ministry of Environment & Forests at http://envfor.nic.in . and a copy of the same should be forwarded to the Regional Office of this Ministry located at Bhubaneswar.	Complied. A copy of Environmental Clearance has been advertised in two local newspapers such as Anupam Bharat & Aam Khabar, dt.10.01.2006.

Six Monthly EC Compliance Report-Bamebari Iron & Manganese Mine, M/s Tata Steel Limited for Apr'20 – Sep'20

xvi.	The Ministry or any other competent authority may stipulate any further condition for environmental protection.	Noted.
xvii.	Failure to comply with any of the	Noted
	conditions mentioned above may result in	
	withdrawal of this clearance.	
xviii.	The above conditions will be enforced,	Noted
	inter alia, under the provisions of the	
	Water (Prevention & Control of Pollution)	
	Act, 1974, the Air (Prevention & Control	
	of Pollution) Act, 1991 along with their	
	amendments and rules.	

$A.\ Additional\ Conditions\ as\ per\ MoEFCC\ Letter\ No.\ 106-9/11/EPE\ dt.\ 02.12.2014\ issued\ to\ all$ $Non\ - Coal\ Mining\ Projects.$

Sl.	Stipulated Condition	Compliance Status
No.		(April'20 to Sep'20)
i.	The project authority shall adopt best mining	Complied & Ongoing.
	practices for given conditions in the mining	The mine is operated by opencast mining method
	area, adequate number of check dam, retaining	using shovel-dumper combination.
	wall/ structure, garland drains and settling	Due care is taken during all the aspects of mining
	ponds should be provided to arrest the wash off	operations (starting from excavation till dispatch of
	with rain water in catchment area.	the minerals) to ensure sustainable practices are
		adopted such as:
		1. Wet drilling (Drills with inbuilt features of wet
		drilling) for preventing fugitive dust generation at the working face.
		2. Controlled blasting by means of pre-split blasts
		using both NONEL & SME for arresting fly rocks
		and improved fragmentation with minimal
		ground vibration is practiced.
		3. Pre-wetting is also carried out prior to blasting to
		minimize dust generating potential of blasts.
		4. Stationary water sprinklers and mobile water
		tankers are operated main/permanent haul
		roads.
		5. Garland drains all along the periphery of dumps
		supported with toe walls/gabion walls and 10nos
		of settling pits (1.5mX1.5mX2m) for guiding effluents/surface runoff up to ETP.
ii.	The natural water bodies and or stream which	Complied.
	are flowing in and around the village should not	Agreed. No water bodies disturbed due to mining
	be disturbed. The water table should be	activities. Drinking water is provided to the villagers.
	nurtured so as not to go down below the pre-	
	mining period. In case of any water scarcity in	
	the area, the project authority has to provide	

Sl. No.	Stipulated Condition	Compliance Status (April'20 to Sep'20)
	water to the villagers for their use. A provision for regular monitoring of water table in open dug well	
iii.	The illumination and sound at night at project sites disturb the village in respect of both human and animal population. Consequent sleeping disorder and stress may affect the health in the village located close to mining operation. Habitations have a right to darkness and minimal noise level at night. The Project Proponents must ensure that the biological clock of the village is not disturbed by orienting the floodlights mask way from the village and keeping the noise levels well within prescribed limits for day/ night hours.	Complied. The operation of the mine is restricted to the day hours only. Hence, there is no disturbance to the habitats located close to the mining operation. The biological clock of the village is not disturbed.
iv.	The project Authority shall make necessary alternative arrangement, where required, in consultation with state Government to provided alternated areas for livestock grazing. In this case context, the Project Authority should implement the direction of Hon'ble Supreme Court with regard to acquiring grazing land. The sparse tress on such grazing ground, which provides mid-day shelter from the scorching sun, should be scrupulously guarded felling lest the cattle abandon the grazing ground or return home by noon.	No such grazing land have been acquired by the company.
v.	Where ever blasting is undertaken as part of mining activity, the Project Authority shall carry out vibration studies well before approaching any such habitats or other building to evaluate the zone of influence and impact of blasting on neighbourhood. Within 500 meters of such sites vulnerable to blasting vibration, avoidance of use of explosives and adoption of alternative means of mineral extraction such as ripper/dozer combination/ rock breakers/ surface mineral etc should be seriously considered and practiced wherever practicable. A provision for monitoring of each blast should be made so that impact of blasting on nearby habitation and dwelling unit could be ascertained. The covenant of lease deed under rule 31 of MCR 1960 provided that no mining operation shall be carried out within 50 meters of public works such as public roads and	Complied. Deep hole drilling and controlled blasting technique is adopted in the mine. Vibration study has been conducted by CIMFR. Each blast is monitored for the Peak Particle Velocity which is well within the DGMS prescribed limits. Rock breakers are used to avoid secondary blasting.

Six Monthly EC Compliance Report-Bamebari Iron & Manganese Mine, M/s Tata Steel Limited for Apr'20 – Sep'20

Sl. No.	Stipulated Condition	Compliance Status (April'20 to Sep'20)
	building or inhabited sites except with prior permission from the competent Authority.	
vi.	Main haulage road in the mines should be provided with permanent water sprinkler and other road should be regularly wetted water tanker fitted with sprinkler. Crusher and material transfer points should be invariably be provided with bag filter and or dry fogging system. Belt conveyor fully covered to avoid air borne dust.	Complied. Mobile water based dust suppression is regularly carried out over the main haul road, mineral stacking area overburden dumping areas and permanent portions are operated with fixed sprinklers.
vii.	The project Authority shall ensure that productivity of agriculture crops is not affected due to the mining operation. Crop Liability Insurance Policy has to be taken by PP as a precaution to compensate for the crop loss. The impact zone shall be 5 Km from the boundary of mine lease area for insurance policy. In case, several mines are located in cluster mines, formed inter – alia, to sub serve such and objective shall be responsibility for securing such Crop Liability Policy.	Not Applicable. There is no crop land nearby the M.L. area.
viii.	In case any village is located within the mining leasehold which is not likely to be affected due to mining activities during the life of mine, the Expert Appraisal Committee (EAC) should consider the proposal of Environmental Clearance (EC) for reduced mining area. The mining lease may be executed for the area for which EC is accorded. The mining plan also accordingly revised and required stipulation under the MMDR Act 1957 and MCR 1969 met.	Not Applicable.
ix.	Transportation of minerals by road passing through the village shall not be allowed. A "bypass" road should be constructed (say leaving a gap of at least 200 m) for the purpose of transportation of minerals so that the impact of sound, dust and accidents could be mitigated. The PP shall bear the cost towards the widening and strengthening of existing public road	Complied. There is no transportation road passing through any village.

Sl. No.	Stipulated Condition	Compliance Status (April'20 to Sep'20)
X.	network in case same is proposed to be used for the project. No road movement should be allowed on existing village road No road movement should be allowed on existing village road without appropriately increasing carrying capacity of such road Likewise, alteration or re-routing of foot paths, pagdandies, cart road and village infrastructure/ public utilities or roads (for purpose of land acquisition for mining) shall be avoided to extent possible and in such case acquisition is inevitable, alternative arrangements shall be made first and the only the area can be acquired. In these types of cases Inspection reports by site visit by expert may be insisted upon which should be done through	Not Applicable. Entire lease area of 406.0ha is govt. land (404.669ha of forest land and 1.331ha of non-forest land thus this project was not subjected to land acquisition.
xi.	reputed Institutes. The CSR activates by companies including mining establishment has become mandatory up to 2% their financial turn over, socio Economic Development of neighbourhood. Habitats could also be planned and executed by the PPs more systemically based on need based door to door survey by established Social Institute/ Workers on the lines as required under TOR. "R&R Plan// compensation details for Project Affected People (PAP) should be furnished. While preparing the R&R plant, the relevant State/ national Rehabillitation & Resettlement Policy should be kept in view. In respect of SCs and STs and weaker section of society in study, a need bashed sample survey, family-wise, should be undertaken to assess their requirement, and action programmes prepared and submitted accordingly, integrating the sectoral programs of line department of State Government. It may be clearly brought out whether the village including their R&R and socio-economics aspect should be discussed in EIA report.	Complied. Tata Steel has taken up many social initiatives for the improvement of quality of life of the surrounding community by means of education, health and other socio-economic aspects. TSRDS (Tata Steel Rural Development Society) has been pioneering the initiatives through CSR activities. R&R policy is not applicable for the PP till now.

Agent & Head, Manganese Group of Mines Ferro Alloys Mineral Division (Bamebari Iron and Mn.Mine) M/s Tata Steel Lim

Date:

Sl. No.	Stipulated Condition	Compliance Status (April'20 to Sep'20)
	network in case same is proposed to be used for the project. No road movement should be allowed on existing village road network without appropriately increasing carrying capacity of such road	(0.) (0.) (0.) (0.)
X.	Likewise, alteration or re-routing of foot paths, pagdandies, cart road and village infrastructure/ public utilities or roads (for purpose of land acquisition for mining) shall be avoided to extent possible and in such case acquisition is inevitable, alternative arrangements shall be made first and the only the area can be acquired. In these types of cases Inspection reports by site visit by expert may be insisted upon which should be done through reputed Institutes.	Not Applicable. Entire lease area of 406.0ha is govt. land (404.669ha of forest land and 1.331ha of non-forest land thus this project was not subjected to land acquisition.
xi.	The CSR activates by companies including mining establishment has become mandatory up to 2% their financial turn over, socio Economic Development of neighbourhood. Habitats could also be planned and executed by the PPs more systemically based on need based door to door survey by established Social Institute/ Workers on the lines as required under TOR. "R&R Plan// compensation details for Project Affected People (PAP) should be furnished. While preparing the R&R plant, the relevant State/ national Rehabillitation & Resettlement Policy should be kept in view. In respect of SCs and STs and weaker section of society in study, a need bashed sample survey, family-wise, should be undertaken to assess their requirement, and action programmes prepared and submitted accordingly, integrating the sectoral programs of line department of State Government. It may be clearly brought out whether the village including their R&R and socio-economics aspect should be discussed in EIA report.	Complied. Tata Steel has taken up many social initiatives for the improvement of quality of life of the surrounding community by means of education, health and other socio-economic aspects. TSRDS (Tata Steel Rural Development Society) has been pioneering the initiatives through CSR activities. R&R policy is not applicable for the PP till now.

Agent & Head,

Manganese Group of Mines

Ferro Alloys Mineral Division (Bamebari Iron and Mn.Mine) M/s Tata Steel Limited Date: 01/12/2020

Page **13** of **13**

ISO 14001: 2015 OHSAS 45001: 2018

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/078 Date: 03.05.2020

METEOROLOGICAL DATA FOR APRIL-2020

1. Name of The Client: Bamebari Manganese Mines (M/s TATA Steel Ltd

2. Location : Mines Office

3. Sample Collected By: VCSPL Representative in presence of TATA Representative

D-4-	Temperature(⁰ C)	Relative Humidity	Wind Sp	eed m/sec	Wind	Rain fall
Date	(Avg.)	(%) (Avg.)	Min	Max	Direction	(mm)
01-Apr-20	37.4	26.2	49.3	29.3	3.9	0.6
02-Apr-20	38.2	27.4	56.4	25.1	5.0	0.8
03-Apr-20	39.6	26.3	63.0	26.9	4.7	0.6
04-Apr-20	38.7	25.8	69.4	28.1	3.3	1.4
05-Apr-20	37.2	26.3	53.2	26.4	4.4	0.8
06-Apr-20	38.9	27.5	45.7	22.9	4.7	1.1
07-Apr-20	40.1	25.1	48.3	25.5	2.5	1.1
08-Apr-20	37.4	24.3	62.1	38.0	3.6	0.6
09-Apr-20	37.1	25.4	61.6	35.4	2.8	0.8
10-Apr-20	40.2	25.8	50.6	25.2	4.2	0.6
11-Apr-20	39.6	26.1	59.2	31.0	4.4	1.1
12-Apr-20	40.5	26	60.4	26.3	5.8	0.8
13-Apr-20	42.7	25.2	44.7	21.7	4.7	1.1
14-Apr-20	43.5	24.4	54.3	24.2	3.6	1.1
15-Apr-20	40.9	24.8	65.2	34.0	2.8	1.9
16-Apr-20	39.5	25.1	53.6	30.3	3.3	1.1
17-Apr-20	40.2	23.2	67.8	26.5	4.2	2.2
18-Apr-20	41.1	24.7	80.2	25.9	3.6	1.1
19-Apr-20	39.6	23.6	71.3	36.7	7.5	0.8
20-Apr-20	40.5	24.2	67.3	29.2	3.9	1.1
21-Apr-20	38.7	22.8	64.5	25.3	6.1	1.1
22-Apr-20	35.2	23.1	85.1	37.2	5.0	2.2
23-Apr-20	36.2	22.4	91.2	43.2	5.3	2.2
24-Apr-20	32.3	23.6	81.6	46.1	7.5	2.5
25-Apr-20	35.1	24.3	88.7	44.8	5.3	1.4
26-Apr-20	33.9	16.8	87.3	48.3	3.3	1.7
27-Apr-20	37.4	19.3	82.5	39.6	5.0	0.8
28-Apr-20	33.4	22.2	83.0	42.8	4.2	1.1
29-Apr-20	31.5	24.1	82.6	37.3	4.7	0.6
30-Apr-20	34.2	23.3	78.4	41.4	4.7	1.7

Source: Site Specific Meteorological data & www.worldweatheronline.com

ISO 14001: 2015 OHSAS 45001: 2018

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/079

Date: **03.05.2020**

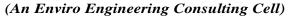
AAQ MONITORING REPORT FOR APRIL-2020 (CORE ZONE)

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitoring Instruments : RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler

3. Sampling Location : **AAQMS-1:**Office Building

4. Sample collected by : VCSPL representative in presence of TATA representative.


							Concentr	ation of Poll	utants					
Sl. No.	Date of Monitoring	$PM_{10} \ (\mu g/m^3)$	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (μg/m³)	$O_3 \ (\mu g/m^3)$	CO (mg/m³)	NH ₃ (µg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	Mn (μg/m³)
1	01.04.2020	60.6	36.36	8.8	12.6	7.1	0.44	26.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
2	04.04.2020	61.4	36.84	8.4	12.2	7.6	0.46	26.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
3	08.04.2020	62.8	37.68	9.2	13.4	7.2	0.42	25.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
4	11.04.2020	68.8	41.28	9.4	13.6	7.4	0.38	25.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
5	15.04.2020	70.2	42.12	9.1	14.2	8.1	0.41	24.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
6	18.04.2020	71.8	43.08	8.6	14.1	8.4	0.42	24.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
7	22.04.2020	72.6	43.56	8.2	13.8	8.6	0.44	23.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
8	25.04.2020	74.8	44.88	7.8	15.2	8.2	0.44	23.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
9	29.04.2020	68.4	41.04	8.1	14.4	7.8	0.42	21.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
	Average	67.93	40.76	8.62	13.72	7.82	0.43	24.64	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
noti Del 2009	t as per CPCB fication, New hi,18th Nov, . for Ambient iir quality	100	60	80	80	180	4	400	1	20	6	5	1	
	mpling and Analysis according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix -L	IS: 5182 (Part- 2)-2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling , 3 rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO-3.2	APHA 22 nd - 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA IO-3.2

 $\begin{array}{c} \textit{BDL Values} \colon SO_2 \!\!< 4\,\mu\text{g/m}^3, \, NO_X \!\!< 9\,\mu\text{g/m}^3, \, O_3 \!\!< \!4\,\mu\text{g/m}^3, \, NH3 \!\!< \!20\,\mu\text{g/m}^3, \, \, Ni \!\!< \!0.01\,\text{ng/m}^3, \, As < 0.001\,\text{ng/m}^3, \, C_6H_6 \!\!< \!0.001\,\mu\text{g/m}^3, \, BaP \!\!< \!0.002\,\text{ng/m}^3, \, Pb \!\!< \!0.001\,\mu\text{g/m}^3, \, CO \!\!< \!0.1\,\text{mg/m}^3, \, Mn \!\!< \!0.001\,\mu\text{g/m}^3, \, Mn \!\!< \!0.001\,\mu\text{g/m}^3, \, No \!\!> \,0.001\,\mu\text{g/m}^3, \, No \!\!>$

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/080 Date: 03.05.2020

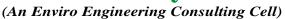
AAQ MONITORING REPORT FOR APRIL-2020 (CORE ZONE)

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitoring Instruments : RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler

3. Sampling Location : **AAQMS-2:**Mines Pit

4. Sample collected by : VCSPL representative in presence of TATA representative.


							Concentra	ation of Poll	utants					
Sl. No.	Date of Monitoring	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (μg/m³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	Mn (μg/m³)
1	01.04.2020	60.8	36.48	14.2	18.6	7.8	0.66	24.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
2	04.04.2020	60.2	36.12	15.2	19.2	8.4	0.64	24.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
3	08.04.2020	59.8	35.88	15.6	19.6	8.6	0.72	25.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
4	11.04.2020	56.8	34.08	12.8	16.9	8.2	0.69	25.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
5	15.04.2020	60.6	36.36	13.2	17.4	7.2	0.52	25.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
6	18.04.2020	59.6	35.76	13.6	17.8	7.6	0.54	26.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
7	22.04.2020	58.8	35.28	12.8	18.8	7.2	0.48	27.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
8	25.04.2020	56.2	33.72	12.4	19.2	7.4	0.44	26.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
9	29.04.2020	55.4	33.24	12.2	19.6	7.1	0.51	26.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
	Average	58.69	35.21	13.56	18.57	7.72	0.58	25.82	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
noti Del 2009	t as per CPCB fication, New lhi,18th Nov, . for Ambient hir quality	100	60	80	80	180	4	400	1	20	6	5	1	
	mpling and Analysis according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix -L	IS: 5182 (Part- 2)-2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling , 3 rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO-3.2	APHA 22 nd - 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA IO-3.2

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $NH3 < 20 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$, $Mn < 0.001 \mu g/m^3$

ISO 14001: 2015 OHSAS 45001: 2018

Date: 03.05.2020

Ref: Envlab/20/081

AAQ MONITORING REPORT FOR APRIL-2020 (CORE ZONE)

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitoring Instruments : RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler

3. Sampling Location : **AAQMS-3:**Weighing Bridge

4. Sample collected by : VCSPL representative in presence of TATA representative.

							Concentra	ation of Poll	utants					
Sl. No.	Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (μg/m³)	Ο ₃ (μg/m ³)	CO (mg/m³)	NH ₃ (μg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	Mn (μg/m³)
1	01.04.2020	62.8	37.68	8.1	16.2	7.4	0.52	24.02	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
2	04.04.2020	66.2	39.72	7.8	16.8	7.2	0.54	24.4	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
3	08.04.2020	64.8	38.88	7.4	17.2	7.1	0.58	24.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
4	11.04.2020	62.8	37.68	8.2	17.6	7.6	0.62	23.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
5	15.04.2020	63.6	38.16	8.4	15.8	7.2	0.66	22.9	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
6	18.04.2020	61.8	37.08	8.6	14.6	7.3	0.61	23.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
7	22.04.2020	66.2	39.72	9.1	14.8	7.1	0.58	24.2	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
8	25.04.2020	66.6	39.96	9.4	15.2	7.2	0.6	24.8	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
9	29.04.2020	64.2	38.52	9.6	16.1	8	0.61	23.6	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
	Average	64.33	38.60	8.51	16.03	7.34	0.59	23.95	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
noti Del 2009	t as per CPCB fication, New lhi,18th Nov, o. for Ambient hir quality	100	60	80	80	180	4	400	1	20	6	5	1	
	ampling and Analysis according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix -L	IS: 5182 (Part- 2)-2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling , 3 rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO-3.2	APHA 22 nd - 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	EPA IO-3.2

BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $NH3 < 20 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 mg/m^3$, $Mn < 0.001 \mu g/m^3$

ISO 14001: 2015 OHSAS 45001: 2018

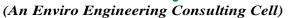
Ref: Envlab/20/082 Date: **03.05.2020**

AAQ MONITORING REPORT FOR APRIL-2020 (BUFFER ZONE)

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitoring Instruments : RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler

3. Sample collected by : VCSPL representative in presence of TATA representative.


						Concentra	tion of Poll	utants					
Date of Monitoring	PM ₁₀ (μg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m ³)	NOx (µg/m³)	O ₃ (µg/m ³)	CO (mg/m³)	NH ₃ (µg/m ³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	Benzene (µg/m³)	Benzo(a) pyrene (ng/m³)	HC (µg/m³)
24.04.2020 BZ1: Jaganathpur	61.2	36.72	6.6	12.8	11.2	0.74	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
24.04.2020 BZ2: Bandhubaria	68.8	41.28	7.7	12.6	11.8	0.89	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
25.04.2020 BZ3: Raikara	70.6	42.36	7.8	10.8	8.8	0.84	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	60	80	80	180	4	400	1	20	6	5	1	
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix -L	IS: 5182 (Part- 2)-2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling , 3 rd Edn.By James P. Lodge (Method- 401)	EPA IO- 3.2	EPA IO-3.2	APHA 22 nd - 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	

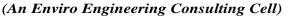
BDL Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $NH3 < 20 \mu g/m^3$, $Ni < 0.01 ng/m^3$, $As < 0.001 ng/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 ng/m^3$, $Pb < 0.001 \mu g/m^3$, $CO < 0.1 ng/m^3$, $HC < 0.001 \mu g/m^3$

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/083 Date: 03.05.2020

DAILY DRINKING WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)


2. Sampling location : **DW-1: Water Treatment Plant**

Sl No	Test Parameters		per IS: 10500- 2012					Analysis	Results				
•		Desirable Limit	Permissible Limit	01-04- 20	02-04- 20	03-04-20	04-04- 20	05-04-20	06-04-20	07-04- 20	08-04- 20	09-04- 20	10-04- 20
1	pH value (25°C)	6.5 - 8.5	No Relaxation	7.58	7.52	7.54	7.51	7.52	7.52	7.56	7.58	7.51	7.48
2	Turbidity in NTU	1	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
3	Residual Free Chlorine in mg/l	0.2(Min.)	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SI	Test	Norms as per IS: 10500-2012										•	
No	Parameters	Desirable Limit	Desirable Limit	11-04- 20	12-04- 20	13-04-20	14-04- 20	15-04-20	16-04-20	17-04- 20	18-04- 20	19-04- 20	20-04- 20
1	pH value (25°C)	6.5 - 8.5	6.5 - 8.5	7.42	7.51	7.52	7.54	7.56	7.60	7.61	7.50	7.49	7.49
2	Turbidity in NTU	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
3	Residual Free Chlorine in mg/l	0.2(Min.)	0.2(Min.)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SI	Test	Norms as pe	r IS: 10500-2012					1					
No	Parameters	Desirable Limit	Desirable Limit	21-04- 20	22-04- 20	23-04-20	24-04- 20	25-04-20	26-04-20	27-04- 20	28-04- 20	29-04- 20	30-04- 20
1	pH value (25°C)	6.5 - 8.5	6.5 - 8.5	7.52	7.51	7.56	7.54	7.52	7.48	7.52	7.46	7.44	7.50
2	Turbidity in NTU	1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
3	Residual Free Chlorine in mg/I	0.2(Min.)	0.2(Min.)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/084 Date: 03.05.2020

SURFACE WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-20

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location : SW-1: Confluence Point at Kassia Nalla SW-2:Intake Pint at Tindharia

3. Date of Analysis : 27.04.2020 TO 02.05.2020

				Standards	Analys	is Results
Sl. No.	Parameter	Testing Methods	Unit	as per IS-2296:1992	25.0	4.2020
				Class -'C'	SW-1	SW-2
1	Dissolved Oxygen (minimum)	APHA 2540 C	mg/l	4	6.4	6.6
2	BOD (3) days at 27°C (max)	APHA 5210 B	mg/l	3	< 1.8	< 1.8
3	Total Coli form	АРНА 9221 В	MPN/ 100 ml	5000	140	160
4	pH Value	APHA 4500H ⁺ B		6.0-9.0	7.61	7.66
5	Colour (max)	APHA 2120 B, C	Hazen	300	CL	CL
6	Total Dissolved Solids	APHA 2540 C	mg/l	1500	186	180
7	Copper as Cu (max)	APHA 3111 B,C	mg/l	1.5	<0.02	<0.02
8	Iron as Fe (max)	APHA 3500Fe, B	mg/l	0.5	0.31	0.36
9	Chloride (max)	APHA 4500Cl ⁻ B	mg/l	600	66	68
10	Sulphates (SO ₄) (max)	APHA 4500 SO4 ²⁻ E	mg/l	400	4.6	5
11	Nitrate as NO ₃ (max)	APHA 4500 NO ₃ -E	mg/l	50	3.4	4
12	Fluoride as F (max)	APHA 4500F C	mg/l	1.5	0.028	0.032
13	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B,D	mg/l	0.005	<0.001	<0.001
14	Cadmium as Cd (max)	APHA 3111 B,C	mg/l	0.01	<0.01	<0.01
15	Selenium as Se (max)	APHA 3114 B	mg/l	0.05	<0.001	<0.001
16	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.004	<0.004
17	Cyanide as CN (max)	APHA 4500 CN° C,D	mg/l	0.05	ND	ND
18	Lead as Pb(max)	APHA 3111 B,C	mg/l	0.1	<0.01	<0.01
19	Zinc as Zn(max)	APHA 3111 B,C	mg/l	15	<0.05	<0.05
20	Hexa Chromium as Cr +6	APHA 3500Cr B	mg/l	0.05	<0.01	<0.01
21	Anionic Detergents (max)	APHA 5540 C	mg/l	1.0	<0.2	<0.2

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/085 Date: 03.05.2020

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location : STPW-1: STP-Inlet STPW-2: STP-Outlet

3. Date of sampling : 13.04.2020

4. Date of analysis : 14.04.2020 TO 20.04.2020

SI.	Parameters	Tastina Mathada	Unit	Standards (In land	Analysis	Results
No.	Parameters	Testing Methods	Unit	Surface water)	STPW-1	STPW-2
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourless as far as practicable	<5 & pungent smell	<5 & U/O
2	Suspended Solids	APHA 2540 D	mg/l	100	90	52
3	Particulate size of SS	APHA 2540 D		Shall pass 850 micron IS Sieve	< 850	< 850
4	pH Value	APHA 4500H ⁺ B		5.5-9.0	6.88	7.16
5	Temperature	АРНА 2550-В	°C	Shall not exceed 5°C above the receiving water temperature	28	28
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.6	ND
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH _{3,} C	mg/l	50	8.2	1.8
9	Total Kjeldahl nitrogen (as NH₃)	APHA 4500-N _{org} C	mg/l	100	13.2	7.2
10	Free ammonia (as NH₃)	APHA 4500-NH _{3,} F	mg/l	5	ND	ND
11	BOD(3 days at 27°C (max)	APHA 5210 B	mg/l	30	31.4	6.6
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	190	46
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	<0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	<0.01
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.001
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	< 0.05
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	< 0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	< 0.05	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.62	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	< 0.001
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	< 0.001
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.36	0.031
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.051	<0.05
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	< 0.1	< 0.1
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	96% survival of fishes	98% survival of fishes
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.046	<0.005
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	1.82	0.66
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	<0.001	<0.001
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	5.6	1.6

(An Enviro Engineering Consulting Cell)

OHSAS 45001: 2018

Ref: Envlab/20/086 Date: **03.05.2020**

FUGITIVE DUST ANALYSIS REPORT FOR THE MONTH OF APRIL-2020

1. Name of Industry:Bamebari Manganese Mines (M/s TATA Steel Limited)2.Sample collected by:VCSPL Representative in presence of TATA Representative

	Sampling Location			Apr-20
L-1	Near Sorting Yard (Joribar Block)	Prescribed Standard	Monitoring Date	15.04.2020
Parameters	Method of Measurement			
SPM	Gravimetric method	$1200(\mu g/m^3)$		711.2
L-2	Near Stack Yard(Joribar Block)	Prescribed Standard	Monitoring Date	15.04.2020
Parameters	Method of Measurement			
SPM	Gravimetric method	$1200 (\mu g/m^3)$		568.8
L-3	Near Haul Road (Joribar Block)	Prescribed Standard	Monitoring Date	15.04.2020
Parameters	Method of Measurement			
SPM	Gravimetric method	$1200 (\mu g/m^3)$		524.2

ISO 14001: 2015

OHSAS 45001: 2018

Ref: Envlab/20/087

Date: 03.05.2020

DRINKING WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-2020

1. Name of Industry Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location **DW-1: Near Canteen**

3. Date of sampling 21.04.2020

4. Date of analysis 22.04.2020 TO 27.04.2020

5. Sample collected by VCSPL Representative in presence of TATA Representative

Sl. No	Parameter	Testing Methods	Unit		IS:10500-2012 n 2015 & 2018	Analysis Results
						DW-1
Microbi	ological Analysis					
1	Total Coliform Organism MPN/100ml	APHA 9221-B	MPN/100ml		table in any 100 ml mple	<1.1
2	Fecal Coliforms	APHA9221-E	MPN/100ml		•	<1.1
3	E. Coli	APHA9221-F	MPN/100ml		table in any 100 ml	Absent
Chemic	al Analysis		II.		*	I.
	Parameter	Testing Methods	Unit	Desirable Limit	Permissible Limit	Analysis Results
1	Colour	APHA 2120 B,	Hazen	5	15	CL
2	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable
4	pH value at 25°C	APHA 4500H ⁺ B	NTU	6.5-8.5	No Relaxation	7.61
5	Turbidity	APHA 2130 B		1	5	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	112
7	Aluminium (as Al)	APHA 3500Al B	mg/l	0.03	0.2	< 0.001
8	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	1	< 0.2
9	Boron (as B)	APHA 4500B, B	mg/l	0.5	2.4	< 0.01
10	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	51.2
11	Chloride (as Cl)	APHA 4500Cl ⁻ B	mg/l	250	1000	48
12	Copper (as Cu)	APHA 3111 B	mg/l	0.05	1.5	<0.05
13	Fluoride (as F)	APHA 4500F- D	mg/l	0.05	1.5	<0.03
14	Residual Free Chlorine	APHA 4500Cl, B	mg/l	0.03	1	
15	Iron (as Fe)	APHA 3500Ci, B	mg/l	1.0	No Relaxation	ND 0.24
16	Magnesium (as Mg)	APHA 3500Fe, B	mg/l	30	100	26
17	Manganese (as Mn)	APHA 3500Mg B	mg/l	0.1	0.3	<0.005
18	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	<0.003
19	Nitrate (as NO ₃)	APHA 4500 NO3- E	mg/l	45	No Relaxation	3.2
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.001
21	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	5.6
22	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	5.2
23	Alkalinity (as CaCO ₃)	APHA 2320 B	mg/l	200	600	61.2
24	Total Hardness(as CaCO ₃)	APHA 2340 C	mg/l	200	600	74
25	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	< 0.001
26	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	No Relaxation	ND
27	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	< 0.01
28	Mercury (as Hg)	APHA 3500 Hg B	mg/l	0.001	No Relaxation	< 0.001
29	Arsenic (as As)	APHA 3114 B	mg/l	0.01	0.05	< 0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	< 0.05
31	Chromium (as Cr+6)	APHA 3500Cr B	mg/l			< 0.05
32	Poly Aromatic Hydrocarbon as PAH	APHA 6440 B	μg/l	0.0001	No Relaxation	<0.0001
33	Pesticide	APHA 6630 B,C	mg/l		No Relaxation	Absent

Prepared by

ISO 14001: 2015 OHSAS 45001: 2018

(An Enviro Engineering Consulting Cell)

Ref: Envlab/20/088 Date: **03.05.2020**

OIL SEPRATION PIT WATER QUAITY ANALYSIS REPORT-APRIL-2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location : WW-1: Workshop Water

3. Date of sampling : 17.04.2020

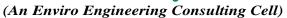
4. Date of analysis : 18.04.2020 to 24.04.2020

S1.	Parameters	Unit	Testing Method	General Standards for discharge of Environmental Pollutants Part A- Effluents	Analysis Report
1	Colour	Hazen	APHA 2120 B,C	5	CL
2	Odour	-	APHA 2150 B	Unobjectionable	U/O
3	pH at 25 degree C	-	APHA 4500 H ⁺ B	5.5-9.0	7.46
4	Total Dissolved Solids	mg/l	APHA 2540 C	-	156
5	Copper as Cu	mg/l	АРНА 3111 В,С	3.0	< 0.02
6	Fluoride as F	mg/l	APHA 4500 F ⁻ C	2.0	0.038
7	Total Residual Chlorine	mg/l	APHA 4500 Cl, b	1.0	ND
8	Iron as Fe	mg/l	APHA 3500 Fe B	3.0	0.68
9	Manganese as Mn	mg/l	APHA 3500 Mn B	2.0	1.41
10	Nitrate as NO3	mg/l	APHA 4500 NO ₃ E	10.0	4.42
11	Phenolic Compounds as C ₆ H ₅ OH	mg/l	APHA 5530 B,D	1.0	< 0.05
12	Selenium as Se	mg/l	APHA 3114 B	0.05	< 0.001
13	Cadmium as Cd	mg/l	APHA 3111 B,C	2.0	< 0.001
14	Cyanide as CN	mg/l	APHA 4500 CN ⁻ C,D	0.2	ND
15	Lead as Pb	mg/l	АРНА 3111 В,С	0.1	< 0.01
16	Mercury as Hg	mg/l	APHA 3500 Hg	0.01	< 0.001
17	Nickel as Ni	mg/l	APHA 3500 Ni	3.0	< 0.05
18	Arsenic as As	mg/l	APHA 3114 B	0.2	<0.004
19	Total Chromium as Cr	mg/l	APHA 3500 Cr B	2.0	< 0.05
20	Zinc as Zn	mg/l	APHA 3111 B,C	5.0	< 0.05
21	Hexavalent Chromium as Cr ⁺⁶	mg/l	APHA 3500 Cr B	0.1	< 0.01
22	Vanadium as V	mg/l	APHA 3500 V	0.2	< 0.001
23	Total Suspended Solids	mg/l	APHA 2540 D	100	56
24	Temperature	°C	APHA 2550 B	shall not exceed 50C above the receiving water temperature	26
25	Dissolved Oxygen	mg/l	APHA 2540 C	-	6.4
26	BOD	mg/l	APHA 5210 B	30	<1.8
27	COD	mg/l	APHA 5220 C	250	32
28	Oil & Grease	mg/l	APHA 5520 B	10	ND
29	Ammonical Nitrogen as N	mg/l	APHA 4500 NH ₃ C	50	ND
30	Total Kjedahl Nitrogen as N	mg/l	APHA 4500 N _{ORG} C	100	2.4
31	Sulphide as S	mg/l	APHA 4500 S ₂ D	2.0	ND
32	Free Ammonia as NH3	mg/l	APHA 4500 NH ₃ F	5.0	ND
33	Particulate Size of Suspended Solids	mg/l	APHA 2540 D	850 µm	Passes through 850 mm IS Sieve
34	Bio-assay	mg/l	АРНА 8910 С	90% survival in 100% effluent	94% survival in 100% effluent
35	Dissolved Phosphates as PO4	mg/l	APHA 4500 P D	5.0	< 0.05

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/089 Date: 03.05.2020

AMBIENT NOISE MONITORING REPORT FOR APRIL-2020


Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)
 Monitored by : VCSPL Representative in presence of TATA Representative

Sl. No	Monitoring Date	Name of Location	Unit	Day time Equivalent Result	Standard As per CPCB	Night time Equivalent Result	Standard As per CPCB
1		Town ship		66	75	50.6	70
2	24.04.2020	Hospital	dB (A)	48	50	32	40
3		Mines Area		69	75	42	70

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/090 Date: 03.05.2020

PERSONAL DUST SAMPLING ANLYSIS REPORT FOR THE MONTH OF APRIL-2020

Name of Industry : **Bamebari Manganese Mines (M/s TATA Steel Limited)**Sample collected by : VCSPL representative in presence of TATA representative.

Sl.No	Date of sampling	Name of the Person	Personal Number	Standard	Particulate matter as PM (mg/m³)
1		lalatendu Lohar	TSP/798688/0919		4.6
2		Santana Munda	TSP/753276/0819		4.4
3		Bigneswari Malakut	BMM-236		4.2
4	21.04.2020	Johan Hembram	MW0719167159	5 m a/m ³	4.1
5		Saraswati Tanti	MWO719166977	5 mg/m ³	3.8
6		Shradhanjali Maharana	MWO719167124		3.6
7		Bhaina Hembram	MWO719166713		3.2
8		Parinda Munda	MWO719167743		4.1

Date: 03.05.2020

ISO 14001: 2015 OHSAS 45001: 2018

(An Enviro Engineering Consulting Cell)

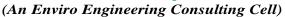
Ref: Envlab/20/091

GROUND WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF APRIL-20

1. Name of Industry Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location **GW-1:** Joribahal Pump house **GW-2: Nimera Village-OW**

16.04.2020


3. Date of sampling 4. Date of analysis 17.04.2020 TO 22.04.2020

Sl.	Parameter	Testing Methods	Unit	Standard as Per	Analysis	Results
No	Farameter	Testing Methods	Unit	IS 10500:2012	GW-1	GW-2
1	Color	APHA 2120 B, C	Hazen	5	CL	CL
2	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable
4	Turbidity	APHA 2130 B	NTU	1	1.26	1.4
5	pH Value	APHA 4500H+ B		6.5-8.5	7.52	7.44
6	Total Hardness (as CaCO ₃)	APHA 2540 C	mg/l	300	108.0	122.0
7	Iron (as Fe)	APHA 3500Al B	mg/l	0.3	0.22	0.28
8	Chloride (as Cl)	APHA 5540 C	mg/l	250	44.0	52.0
9	Residual, free Chlorine	APHA 4500B, B	mg/l	0.2	ND	ND
10	Dissolved Solids	APHA 3500Ca B	mg/l	500	208.0	212.0
11	Calcium (as Ca)	APHA 4500Cl- B	mg/l	75	46.0	51.2
12	Magnesium (as Mg)	APHA 3111 B,C	mg/l	30	22.6	24.0
13	Copper (as Cu)	APHA 4500F- C	mg/l	0.05	< 0.02	< 0.02
14	Manganese (as Mn)	APHA 4500Cl, B	mg/l	0.1	0.02	0.012
15	Sulphate (as SO ₄)	APHA 3500Fe, B	mg/l	200	5.2	5.8
16	Nitrate (as NO ₃)	APHA 3500Mg B	mg/l	45	4.2	3.8
17	Fluoride (as F)	APHA 3500Mn B	mg/l	1	0.018	0.024
18	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5220 B	mg/l	0.001	< 0.001	< 0.001
19	Mercury (as Hg)	APHA 4500 NO ₃ E	mg/l	0.001	< 0.002	< 0.002
20	Cadmium (as Cd)	APHA 5530 B,D	mg/l	0.003	< 0.01	< 0.01
21	Selenium (as Se)	APHA 3114 B	mg/l	0.01	< 0.001	< 0.001
22	Arsenic (as As)	APHA 4500 SO ₄ ²⁻ E	mg/l	0.01	< 0.004	< 0.004
23	Cyanide (as CN)	APHA 2320 B	mg/l	0.05	< 0.01	< 0.01
24	Lead (as Pb)	APHA 2340 C	mg/l	0.01	< 0.01	< 0.01
25	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	3.6	4.2
26	Anionic Detergents (as MBAS)	APHA 4500 CN- C,D	mg/l	0.2	< 0.2	< 0.2
27	Chromium (as Cr ⁺⁶)	APHA 3111 B,C	mg/l		< 0.01	< 0.01
28	Mineral Oil	APHA 3500 Hg	mg/l	0.01	< 0.01	< 0.01
29	Alkalinity	APHA 3114 B	mg/l	200	78.0	84.0
30	Aluminium as(Al)	APHA 3111 B,C	mg/l	0.03	<1.0	<1.0
31	Boron (as B)	APHA 3500Cr B	mg/l	0.5	< 0.1	< 0.1
32	Poly Aromatic Hydrocarbon (as PAH)	APHA 6440 B	μg/l	<0.0001	< 0.0001	< 0.0001
33	Pesticide	APHA 6630 B,C	mg/l	Absent	Absent	Absent

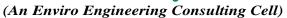
ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/092 Date: 03.05.2020

GROUND WATER LEVEL ANALYSIS REPORT FOR THE MONTH OF APRIL-20

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location : GWL-1: Joribahal Pump house GWL-2: Nimera Village-OW


3. Date of sampling : 16.04.2020

SL.NO	Monitoring Date	Analysis Result (mt/bgl)
1	Joribahal Pump House	6.8
2	Nimera Village (OW)	4.2

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Envlab/20/093 Date: 03.05.2020

GROUND WATER TRACE METALS ANALYSIS REPORT FOR THE MONTH OF APRIL-20

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Date of sampling : 16.04.2020

				Standard as	Analysis	Results
Sl. No	Parameter	Testing Methods	Unit	per IS - 10500:2012 Amended on 2015 & 2018	GW-1:B/W at Panchayat Office	GW-2: Nimera Village OW
1	Iron (as Fe)	APHA 3500Fe, B	mg/l	1	0.32	0.26
2	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	< 0.05	< 0.05
3	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.014	0.012
4	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l		< 0.05	< 0.05
5	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	< 0.001	< 0.001
6	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	< 0.01	< 0.01
7	Selenium (as Se)	APHA 3114 B	mg/l	0.01	< 0.001	< 0.001
8	Arsenic (as As)	APHA 3114 B	mg/l	0.01	< 0.001	< 0.001
9	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	< 0.01	< 0.01
10	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	2.4	2.8

(An Enviro Engineering Consulting Cell)

ISO 9001 : 2008 ISO 14001: 2015

OHSAS 45001: 2018

Ref: Envlab/20/R-0492

Date: 01/06/2020

METEOROLOGICAL DATA FOR MAY-2020

1. Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location

Mines Office

3. Sample collected by

VCSPL representative in presence of TATA representative.

Date	Tempera	ture(°C)	Relative H	umidity (%)	Wind Spe	eed m/sec	Wind	Rain fal
	Max	Min	Max	Min	Max	Min	Direction	(mm)
1-May-20	35.8	24.8	94.8	31.8	3.8	2.1	SE	1.2
2-May-20	34.6	28.1	84.6	35.2	5.1	2.6	SE	0.6
3-May-20	36.6	24.6	91.4	26.2	5.9	2.8	SE	0
4-May-20	34.8	21.8	90.8	60.2	4.4	3.2	SE	6.8
5-May-20	37.8	21.9	90.2	35.2	3.8	2.6	SE	0.3
6-May-20	35.6	26.8	87.8	43.2	4	2.8*	SE	0.2
7-May-20	39.2	27.6	80.2	29.6	4.1	1.4	WSW	0
8-May-20	39.6	27.8	82.4	26.2	3.6 -	1.6	SE	0
9-May-20	39.2	28.8	71.2	30.8	3.4	2.1	SE	0
10-May-20	38.6	27.6	80.2	24.2	6.8	1.6	SE	0
11-May-20	37.2	26.6	74.4	34.2	5.6	1.8	SW	0
12-May-20	39.6	30.2	66.8	32.2	4.6	1.4	SSE	0
13-May-20	36.2	26.8	64.8	27.4	4.7	2.1	SSE	0
14-May-20	39.2	27.4	63.2	22.8	4.2	2.2	SW	0
15-May-20	38.8	25.8	61.6	25.2	4.1	2.4	SW.	0
16-May-20	39.2	25.6	88.2	31.6	3.6	2.1	SW	0.4
17-May-20	40.8	28.2	86.2	23.2	3.8	1.6	S	0
18-May-20	40.2	25.6	91.2	24.4	7.6	1.5	SE	0
19-May-20	29.6	24.2	79.6	38.2	5.6	2.1	S	.0
20-May-20	25.6	20.1	86.2	40.4	14.8	4.2	SE	27.6
21-May-20	34.8	21.8	80.2	38.1	5.1	2.6	Е	0.4
22-May-20	40.2	25.9	81.6	29.6	4	2.5	NE	0
23-May-20	40.4	25.6	84.8	23.8	4.6	3.1	NW	0
24-May-20	39.6	26.8	91.2	30.2	5.6	3,2	SW	0
25-May-20 .	38.8	25.2	90.6	26.2	4.8	3.4	SE	0
26-May-20	41.6	25.8	88.2	47.6	5.8	2.8	SE	Ō
27-May-20	42.8	26.6	85.8	40.6	4.2	3.4	SW	0.6
28-May-20	36.2	27.4	78.8	34.8	5.1	2.6	SW	1.1
29-May-20	38.1	25.8	80.6	37.2	4.7	2.8	S	2.1
30-May-20	38.8	24.6	91.2	33.1	4.6	2.8	SE	1.6
31 May-20	39.1	27.8	83.6	40.2	3,6	2.4	SE	1.8

ISO 14001: 2015 OHSAS 45001: 2018

ISO 9001: 2008

(An Enviro Engineering Consulting Cell)

Ref: Envlab 2

20	1R- 1493
ıa	
OC Sample	

RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VO Bamebari Manganese Mines (M/s TATA Steel Limited) VCSPL representative in presence of TATA representative. AAQMS-1:Office Building Monitoring Instruments Sample collected by Sampling Location Name of Industry

- 26.4

AMBIENT AIR QUALITY MONITORING REPORT FOR MAY -2020 (CORE ZONE)

							PARAMETERS	RS					
Date	PM ₁₀ (µg/m³)	PM _{2.5} (μg/m³)	SO ₂ (µg/m³)	NOx (µg/m³)	Ο ₃ (μg/m³)	CO mg/m³)	NH ₃ (µg/m³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (µg/m³)	BaP (ng/m³)	Mn μg/m³).
04.05.2020	61.6	36.9	8.8	12.6	7.1	0.44	26.6	BDL	BDL	BDL	BDL	BDL	BDL
07.05.2020	62.8	37.7	8.4	12.2	7.6	0.46	26.2	BDL	BDL	BDL	BDL	BDL	BDL
11.05.2020	63.2	37.9	9.2	13.4	7.2	0.42	25.8	BDL	BDL	BDL	BDL	BDL	BDL
14.05.2020	64.8	38.8	9.4	13.6	7.4	0.38	25.2	BDL	BDL	BDL	BDL	BDL	BDL
18.05.2020	65.2	39.1	9.1	14.2	8.1	0.41	24.6	BDL	BDL	BDL	BDL	BDL	BDL
21.05.2020	8.99	40.1	8.6	14.1	8.4	0.42	24.8	BDL	BDL	BDL	BDL	BDL	BDL
25.05.2020	72.6	43.6	8.2	13.8	9.8	0.44	23.2	BDL	BDL	BDL	BDL	BDL	BDL
28.05.2020	74.8	45	7.8	15.2	8.2	0.44	23.6	BDL	BDL	BDL	BDL	BDL	BDL
Average	66.5	39.9	8.7	13.6	7.8	0.4	25.0	BDL	BDL	BDL	BDL	BDL	BDL
Limit as per CPCB notification, New Delhi, 18th Nov, 2009. for Ambient air quality	100	09	80	80	180	4	400	1 N	20	9	S	1	I I
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part-50, Appendix- L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling , 3rd Edn.By James P. Lodge (Method-401)	EPA 10- ,	EPA IO- 3.2	APHA 22nd-3114 C	IS 5182 : Part. 11	IS 5182 : Part, 12	EPA 10- 3.2

Date: 0 06 **BDL** Values: $SO_2 < 4 \mu g/m^3$, $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $NH3 < 20 \mu g/m^3$, $Ni < 0.01 n g/m^3$, $As < 0.001 n g/m^3$, $C_6H_6 < 0.001 \mu g/m^3$, $BaP < 0.002 n g/m^3$, $Pb < 0.001 \mu g/m^3$, $CO_2 < 0.001 \mu g/m^3$, $CO_3 < 0.001$

(An Enviro Engineering Consulting Cell)

ISO 9001: 2008 ISO 14001: 2015

OHSAS 45001: 2018 Date: 0

SUSNOS

Envlat	Ref: p 20 R	-0494
	ZONE)	

mited) Analyzer, VOC Sampler

Bamebari Manganese Mines (M/s TATA Steel Lir RDS (APM 460 BL), FPS (APM 550) Envirotech, CO AAQMS-2:Mines Pit

> Monitoring Instruments Sampling Location Sample collected by

- 464

Name of Industry

AMBIENT AIR QUALITY MONITORING REPORT FOR MAY-2020 (CORE

VCSPL representative in presence of TATA representative.

Date (μ)													
	PМ ₁₀ (µg/m³)	PM _{2.5} (µg/m³)	SO ₂ (µg/m³)	NOx (µg/m³)	Ο ₃ (μg/m³)	CO (mg/m³)	NH_3 $(\mu g/m^3)$	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (µg/m³)	BaP (ng/m³)	Mn (µg/m³)
	61.2	36.7	14.2	18.6	7.8	99.0	24.2	BDL	BDL	BDL	BDL	BDL	BDL
07.05.2020	8.19	37.1	15.2	19.2	8.4	0.64	24.4	BDL	BDL	BDL	BDL	BDL	BDL
11.05.2020	62.6	37.6	15.6	19.6	9.8	0.72	25.6	BDL	BDL	BDL	BDL	BDL	BDL
14.05.2020	63.2	37.9	12.8	16.9	8.2	69.0	25.8	BDL	BDL	BDL	BDL	BDL	BDL
18.05.2020	63.8	38.2	13.2	17.4	7.2	0.52	25.6	BDL	BDL	BDL	BDL	BDL	BDL
21.05.2020	9.49	38.8	13.6	17.8	9.7	0.54	26.2	BDL	BDL	BDL	BDL	BDL	BDL
25.05.2020	8.09	36.6	12.8	18.8	7.2	0.48	27.4	BDL	BDL	BDL	BDL	BDL	BDL
28.05.2020	60.2	36.1	12.4	19.2	7.4	0.44	26.4	BDL	BDL	BDL	BDL	BDL	BDL
Average	62.3	37.4	13.7	18.4	7.8	9.0	25.7	BDL	BDL	BDL	BDL	BDL	BDL
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	09	80	80	180	4	400	-	20	9	ĸ	1	-
Sampling and Analysis 51. done according to -2.	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix- L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182: Part.10- 1999	Air Sampling, 3rd Edn.By James P. Lodge (Method-	, EPA IO. 3.2	EPA 10-	APHA 22nd- 3114 C	IS 5182:	IS 5182:	EPA 10-3.2

BDL Values: SO₂<4 μg/m³, NO_X<9 μg/m³, O₃<4 μg/m³, NH3<20 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³, CO-<0.1 mg/m³, Mn<0.001 μg/m³

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

BDL Values: SO₂<4 μg/m³, NO_X<9 μg/m³, O₃<4 μg/m³, NH3<20 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m³, Pb<0.001 μg/m³,

CO-<0.1 mg/m³, Mn<0.001 µg/m

06/2020 Date: 01

Ref: Envlab/20/R-0495

Massa of Industria		
Danie of Industry		Bamebari Manganese Mines (M/s TATA Steel Limited)
Monitoring Instruments	**	RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler
Sampling Location		AAQMS-3: Weigh Bridge
Sample collected by		VCSPL representative in presence of TATA representative.
Sample collected by		VC

- 7 K 4

•						P	PARAMETERS	RS					
Date	PM ₁₀ (µg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (μg/m³)	NOx (µg/m³)	O ₃ (μg/m³)	CO (mg/m³)	NH ₃ (µg/m³)	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (µg/m³)	BaP (ng/m³)	Mn (µg/m³)
04.05.2020	63.2	38.2	8.4	16.1	7.8	0.56	24.8	BDL	BDL	BDL	BDL	BDL	BDL
07.05.2020	62.2	37.3	8.2	16.2	8.2	0.52	25.6	BDL	BDL	BDL	BDL	BDL	BDL
11.05.2020	62.4	37.4	8.8	16.6	8.4	0.54	25.8	BDL	BDL	BDL	BDL	BDL	BDL
14.05.2020	63.2	38	8.1	17.2	9.8	0.58	26.6	BDL	BDL	BDL	BDL	BDL	BDL
18.05.2020	63.8	38	8.5	16.8	9.1	0.62	26.8	BDL	BDL	BDL	BDL	BDL	BDL
21.05.2020	62.2	37	8.3	16.2	8.8	99.0	27.4	BDL	BDL	BDL	BDL	BDL	BDL
25.05.2020	62.8	37.2	8.2	17.4	8.4	0.61	28.8	BDL	BDL	BDL	BDL	BDL	BDL
28.05.2020	64.1	38.6	8.4	16.9	8.2	0.62	28.1	BDL	BDL	BDL	BDL	BDL	BDL
Average	63.0	37.7	8.4	16.7	8.4	9.0	26.7	BDL	BDL	BDL	BDL	BDL	BDL
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	09	80	08	180	4	400	_	20	9	w	-	1
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40,Part- 50, Appendix- L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182 : Part.10- 1999	Air Sampling, 3rd Edn.By James P. Lodge (Method-	, EPA IO- 3.2	EPA IO-	APHA 22nd- 3114 C	IS 5182 : Part, 11	IS 5182 : Part, 12	EPA 10-3.2

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

Date: 0 | 06 | 2020

Ref:

Envlab/20/2-0496

RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer Bamebari Manganese Mines (M/s TATA Steel Limited)

> Monitoring Instruments Sample Collected by

- 2. 6.

Name of Industry

VCSPL Representative in presence of TATA Representative

						P.	PARAMETERS	SS					
Date	PM ₁₀ (µg/m ³)	PM _{2.5} (μg/m ³)	SO ₂ (µg/m³)	NOx (µg/m³)	O ₃ (µg/m³)	CO (mg/m³)	NH ₃ (µg/m³)	Pb (μg/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆ (µg/m³)	BaP (ng/m³)	HC (ng/m³)
Jaganathpur 13.05.2020	8.99	40.6	6.8	13.2	11.8		BDL	BDL		BDL	BDL	BDL	BDL
Bandhubaria 13.05.2020	9.07	42.4	7.8	13.4	12.6	0.92	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Raikara 16.05.2020	71.8	44.8	8.4	11.2	9.2	0.88	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality	100	99	80	80	180	4	400	1	20	9	S	1	1
Sampling and Analysis done according to	IS: 5182(Part -23)-1999	USEPA CFR- 40.Part- 50, Appendix- L	IS: 5182 (Part-2)- 2001	IS: 5182 (Part- 6)- 2006	IS: 5182 (Part- 9)- 1974	IS 5182: Part.10- 1999	Air Sampling, 3rd Edn.By James P. Lodge (Method-	EPA IO-	EPA 10-	APHA 22nd- 3114 C	IS 5182: Part, 11	IS 5182 : Part, 12	I

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, CO-<0.1 mg/m³, HC<0.00 1ng/ m³

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

Date: 0 | 1 0 6 | 2 0 20

Ref: Envlab/20/R-0497

DRINKING WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-2020

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location

DW-1: Near Canteen

3. Date of sampling

06.05.2020

4. Date of analysis

07.05.2020 TO 12.05.2020

5. Sample collected by

VCSPL Representative in presence of TATA Representative

Sl. No	Parameter	Testing Methods	Unit		er IS:10500-2012 on 2015 & 2018	Analysis Results DW-1				
Micro	biological Analysis	2			,					
1	Total Coliform Organism MPN/100ml	APHA 9221-B	MPN/100ml	Shall not be detecta	ble in any 100 ml sample	<1.1				
2	Fecal Coliforms	APHA9221-E	MPN/100ml			<1.1				
3	E. Coli	APHA9221-F	MPN/100ml	Shall not be detecta	ble in any 100 ml sample	Absent				
	100000000000000000000000000000000000000	Chemical Analysis								
	Parameter	Testing Methods	Unit	Desirable Limit	Permissible Limit	Analysis Results				
1	Colour	APHA 2120 B,	Hazen	5	15	CL				
2	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable				
3	Taste	APHA 2160 C		Agreeable	Agreeable	Agreeable				
4	pH value at 25°C	APHA 4500H ⁺ B	NTU	6.5-8.5	No Relaxation	7.68				
5	Turbidity	APHA 2130 B		1	5	<1.0				
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	118				
7	Aluminium (as Al)	APHA 3500Al B	mg/l	0.03	0.2	< 0.001				
8	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	1	<0.2				
9	Boron (as B)	APHA 4500B, B	mg/l	0.5	2.4	< 0.01				
10	Calcium (as Ca)	APHA 3500Ca B	mg/l	75	200	54.6				
11	Chloride (as Cl)	APHA 4500Cl B	mg/l	250	1000	52				
12	Copper (as Cu)	APHA 3111 B	mg/l	0.05	1.5	< 0.05				
13	Fluoride (as F)	APHA 4500F- D	mg/l	0.05	1.5	< 0.01				
14	Residual Free Chlorine	APHA 4500Cl, B	mg/l	0.2	1	ND				
15	Iron (as Fe)	APHA 3500Fe, B	mg/l	1.0	No Relaxation	0.28				
16	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	28				
17	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	< 0.005				
18	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	< 0.01				
19	Nitrate (as NO ₃)	APHA 4500 NO3- E	mg/l	45	No Relaxation	3.8				
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.001	0.002	< 0.001				
21	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	6.2				
22	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	5.6				
23	Alkalinity (as CaCO ₃)	APHA 2320 B	- mg/l	200	600	66.8				
24	Total Hardness(as CaCO ₃)	APHA 2340 C	mg/l	200	600	80.2				
25	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	< 0.001				
26	Cyanide (as ČN)	APHA 4500 CN- C,D	mg/l	0.05	No Relaxation	ND				
27	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	< 0.01				
28	Mercury (as Hg)	APHA 3500 Hg B	mg/l	0.001	No Relaxation	< 0.001				
29	Arsenic (as As)	APHA 3114 B	mg/l	0.01	0.05	< 0.001				
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	< 0.05				
31	Chromium (as Cr+6)	APHA 3500Cr B	mg/l			< 0.05				
32	Poly Aromatic Hydrocarbon as PAH	APHA 6440 B	μg/l	0.0001	No Relaxation	<0.0001				
33	Pesticide	APHA 6630 B,C	mg/l		No Relaxation	Absent				

NoNote: CL: Colourless, ND: Not Detected.

Verified By

From No.-M-222223 Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905, Estati, wisiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vcspl.org

Committed For Better Environment

ISO	14001:	20	1	5
STIG 1 0			2	1

MINO

(An Enviro Engineering Consulting Cell) 5/11/2020 5/22/202 Ref: N 7.56 \overline{V} 2 0/106/2020 ∇ Date: ENVLab/20/ R-0498 5/31/2020 2 7 99.7 5/10/2020 5/21/2020 7.74 P 7.58 $\overline{\vee}$ ∇ 2 DAILY DRINKING WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-2020 5/20/2020 5/30/2020 5/9/2020 7.61 2 ND $\overline{\vee}$ ∇ ∇ SNO 5/8/2020 5/19/2020 ∇ 2 ∇ 2 5/29/2020 7.64 2 ∇ 5/18/2020 5/7/2020 2 ∇ ∇ 2 5/28/2020 Analysis Results Analysis Results Analysis Results 2.66 2 \overline{V} 5/17/2020 7.66 2 ∇ 2 ∇ VCSPL Representative in presence of TATA Representative Bamebari Manganese Mines (M/s TATA Steel Limited) 5/27/2020 7.68 2 \overline{V} 5/16/2020 99.7 ∇ 2 2 $\overline{\vee}$ 5/26/2020 5/15/2020 $\overline{\vee}$ 2 V 2 ∇ QN. DW-1: Water Treatment Plant 5/25/2020 5/14/2020 2 5/3/2020 ∇ 7.61 7.64 $\overline{\vee}$ R ∇ 2 5/24/2020 5/13/2020 7.58 2 ∇ 7.62 R ∇ 2 ∇ 5/23/2020 5/12/2020 5/1/2020 7.55 7.66 ∇ 2 2 $\overline{\vee}$ 2 $\overline{\vee}$ Permissible Norms as per IS: 10500-2012 Norms as per IS: 10500-2012 Desirable Relaxation 6.5 - 8.5 0.2(Min.) Desirable Norms as per IS: 10500-2017 0.2(Min.) 6.5 - 8.5 Limit Limit Limit Sample collected by Sampling location °Z Name of Industry Desirable 0.2(Min.) Desirable 0.2(Min.) Desirable 0.2(Min.) 6.5 - 8.5 Limit Residual Free Chlorine in mg/l Test Parameters Residual Free Chlorine in mg/l Test Parameters **Test Parameters** pH value (25°C) Residual Free Chlorine in mg/l pH value (25°C) pH value (25°C) Turbidity in Turbidity in NTU Turbidity in NTU

Z S

S S

25°.

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015 OHSAS 45001: 2018

Ref: Env Lab /20/ R-0499

Date: 01 | 06 | 2020

SURFACE WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-2020

1. Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sampling location

SW-1: Confluence Point at Kassia Nalla

SW-2:Intake Pint at Tindharia

3. Date of Analysis

: 20.02.2020 TO 26.02.2020

4. Sample collected by

VCSPL Representative in presence of TATA Representative

		4		Standards	Analy	sis Results
Sl. No.	Parameter	Testing Methods	Unit	as per 1S- 2296:1992	19.0	2.2020
				Class - 'C'	SW-1	SW-2
1	Dissolved Oxygen (minimum)	APHA 2540 C	mg/l	4	-6.2	6.8
2	BOD (3) days at 27°C (max)	APHA 5210 B	mg/l	3	< 1.8	< 1.8
3	Total Coli form	APHA 9221 B	MPN/ 100 ml	5000	160	. 180
4	pH Value	APHA 4500H ⁺ B		6.0-9.0	7.58	7.62
5	Colour (max)	APHA 2120 B, C	Hazen 300		CL	CL
6	Total Dissolved Solids	APHA 2540 C	mg/l	1500	184	172
7	Copper as Cu (max)	APHA 3111 B,C	mg/l	1.5	< 0.02	< 0.02
8	Iron as Fe (max)	APHA 3500Fe, B	mg/l	0.5	0.34	0.4
9	Chloride (max)	APHA 4500Cl B	mg/l	600	66	70
10	Sulphates (\$O ₄) (max)	APHA 4500 SO4 ²⁻ E	mg/l	400	4.6	5.4
11	Nitrate as NO ₃ (max)	APHA 4500 NO ₃ -E	mg/l	50	3.4	4.6
12	Fluoride as F (max)	APHA 4500F C	mg/l	1.5	0.028	0.034
13	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B,D	mg/l	0.005	< 0.001	<0.001
14	Cadmium as Cd (max)	APHA 3111 B,C	mg/l	0.01	< 0.01	< 0.01
15	Selenium as Se (max)	APHA 3114 B	mg/l	0.05	< 0.001	< 0.001
16	Arsenic as As	APHA 3114 B	mg/l	0.2	< 0.004	< 0.004
17	Cyanide as CN (max)	APHA 4500 CN ⁻ C,D	mg/l	0.05	ND	ND
18	Lead as Pb(max)	APHA 3111 B,C	mg/l	0.1	< 0.01	< 0.01
19	Zinc as Zn(max)	APHA 3111 B,C	mg/l	15	< 0.05	< 0.05
20	Hexa Chromium as Cr +6	APHA 3500Cr B	mg/l	0.05	< 0.01	< 0.01
21	Anionic Detergents (max)	APHA 5540 C	mg/l	1.0	<0.2	<0.2

Note: ND: Not Detected.

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

Ref: Envlab/20/2-0500

Date: 01 | 06 | 2020

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-20

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: STP-Inlet STPW-2: STP-Outlet

Date of sampling

06.05.2020

4. Date of analysis

07.05.2020 TO 12.05.2020

Sample collected by

VCSPL Representative in presence of TATA Representative

Sl.	Parameters	Testing Mathed	Unit	Standards (In land	Analysis	Results	
No.	Parameters	Testing Methods	Unit	Surface water)	STPW-1	STPW-2	
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourless as far as practicable	<5 & pungent smell	<5 & U/O	
2	Suspended Solids	APHA 2540 C	mg/l	100	88	46	
3	Particulate size of SS	APHA 2540 C		Shall pass 850 micron IS Sieve	< 850	< 850	
4	pH Value	APHA 4500H ⁺ B		5.5-9.0	6.92	7.28	
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	34	34	
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	3.8	ND	
7	Total Residual Chlorine	APHA 4500Cl, B	mg/l	1	ND	ND	
8	Ammonical Nitrogen (as N)	APHA 4500-NH _{3.} C	mg/l	50	8.6	2.1	
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	13.8	7.8	
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ ,F	mg/l	5	ND	ND	
11	BOD(3 days at 27°C (max)	IS 3025 (P-44) 1993 RA 2003	mg/l	30	28.8	6.2	
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	196	42	
13	Arsenic as As	APHA 3114 B		0.2	< 0.001	< 0.001	
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	< 0.001	< 0.001	
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	< 0.01	< 0.01	
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	< 0.001	< 0.001	
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	< 0.05	< 0.05	
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	< 0.05	< 0.05	
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	< 0.05	< 0.05	
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.68	< 0.05	
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	< 0.001	`<0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	< 0.001	< 0.001	
23	Cyanide as CN (max)	APHA 4500 CN- C,D	mg/l	0.2	ND	ND	
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.42	0.038	
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.056	< 0.05	
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	< 0.1	< 0.1	
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	<0.001	
28	Bio-assay test	АРНА 8910-С		90% survival of fish after 96 hours in 100% effluent	94% survival of fishes	98% surviva of fishes	
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	0.041	< 0.005	
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	1.88	0.62	
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	< 0.001	< 0.001	
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	5.8	2.1	

ote: U/O:Unobjectionable, ND:Not Detected.

ISO 9001 : 2008 ISO 14001: 2015

OHȘAS 45001: 2018

(An Enviro Engineering Consulting Cell)

Ref: Envlab 20 | R-050 |

11.55 11.55

Date: 0

AMBIENT NOISE MONITORING REPORT FOR MAY-20

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitored by : VCSPL Representative in presence of TATA Representative

Sl. No	Monitoring Date	Name of Location	Unit	Day time Equivalent Result	Standard As per CPCB	Night time Equivalent Result	Standard As per CPCB	
1	** 0 * * 0 * 0	Town ship		68	75	56	70	
2	23.05.2020	Hospital		43.6	50	36.8	40	
3		Mines Area	dB (A)	64	75	52	70	

LA NABCE COSCUE

ISO 9001 : 2008 ISO 14001: 2015

(An Enviro Engineering Consulting Cell)

OHSAS 45001: 2018

Date: 0 | 0 6 | 20 20

Ref: Envlab 20 12-0502

PERSONAL DUST SAMPLING ANLYSIS REPORT FOR THE MONTH OF MAY-20

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sample collected by

VCSPL representative in presence of TATA representative.

Sl.No	Date of sampling	Name of the Person	Personal Number	Standard	Particulate matter as PM (mg/m³)
1		Bigneswari Malakut	BMM-236		4.4
2	\$//	Johan Hembram	MW0719167159		. 4.3
3		Shradhanjali Maharana	MWO719167124		4.1
4	23.05.2020	Bhaina Hembram	MWO719166713	5 mg/m ³	4.4
5		lalatendu Lohar	TSP/798688/0919		4.2
6		Santana Munda	TSP/753276/0819		4.5
7		Saraswati Tanti	MWO719166977		4.2
8	•	Parinda Munda	MWO719167743		4.8

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

Date: 01 06 2020

Ref: Env Lab/20/R-0503

FUGITIVE EMISSION ANALYSIS REPORT FOR THE MONTH OF MAY-20

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sample collected by

VCSPL representative in presence of TATA representative.

	Sampling Location			Feb-20	
L-1	Near Sorting Yard (Joribar Block)	Prescribed Standard	Monitoring Date	Analysis Result	
Parameters	Method of Measurement		00.05.2020		
SPM	Gravimetric method	1200(μg/m³)	09.05.2020	716.8	
L-2	Near Stack Yard(Joribar Block)	Prescribed Standard	Monitoring Date	Analysis Result	
Parameters	Method of Measurement		00.05.2020		
SPM	Gravimetric method	$1200(\mu g/m^3)$	09.05.2020	574.2	
L-3	Near Haul Road (Joribar Block)	Prescribed Standard	Monitoring Date	Analysis Result	
Parameters	Method of Measurement		10.05.2020		
SPM	Gravimetric method	$1200(\mu g/m^3)$	10.05.2020	533.8	

LA NABGE MASS

(An Enviro Engineering Consulting Cell)

ISO 14001: 2015

OHSAS 45001: 2018

Ref: Envlab 20 | R-0504

Date: 01/06/2020

OIL SEPARATION PIT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF MAY-20

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location

WW-1: Workshop Water

3. Date of sampling

22.05.2020

Date of analysis

23.05.2020 to 28.05.2020

Sample collected by

VCSPL Representative in presence of TATA Representative

			General Standards for	Analysis Report
Sl.	Parameters	Unit	discharge of Environmental Pollutants Part A- Effluents	May-20
1	Colour	Hazen	5	CL
2	Odour	-	Unobjectionable	U/O
3	pH at 25 degree C	-	5.5-9.0	7.62
4	Total Dissolved Solids	mg/l		152
5	Copper as Cu	mg/l	3.0	< 0.02
6	Fluoride as F	mg/l	2.0	0.044
7	Total Residual Chlorine	mg/l	1.0	ND
8	Iron as Fe	mg/l	3.0	. 0.68
9	Manganese as Mn	mg/l	2.0	1.48
10	Nitrate as NO3	mg/l	10.0	5.8
11	Phenolic Compounds as C6H5OH	mg/l	1.0	< 0.05
12	Selenium as Se	mg/l	0.05	< 0.001
13	Cadmium as Cd	mg/l	2.0	< 0.001
14	Cyanide as CN	mg/l	0.2	ND
15	Lead as Pb	mg/l	0.1	< 0.01
16	Mercury as Hg	mg/l	0.01	< 0.001
17	Nickel as Ni .	mg/l	3.0	< 0.05
18	Arsenic as As	mg/l	0.2	<0.004
19	Total Chromium as Cr	mg/l	2.0	< 0.05
20	Zinc as Zn	mg/l	5.0	< 0.05
21	Hexavalent Chromium as Cr ⁺⁶	mg/l	0.1	< 0.01
22	Vanadium as V	mg/l	0.2	< 0.001
23	Total Suspended Solids	mg/l	100	68
24	Temperature	0C	shall not exceed 5°C above the receiving water temperature	34
25	Dissolved Oxygen	mg/l		7.1
26	BOD at 27°C for 3 days	mg/l	30	<1.8
27	Chemical Oxygen Demand as COD	mg/l	250	40
28	Oil & Grease	mg/l	10	ND
29	Ammonical Nitrogen as N	mg/l	50	ND
30	Total Kjedahl Nitrogen as N	mg/l	100	3.8
31	Sulphide as S	mg/l	2.0	ND
32	Free Ammonia as NH ₃	mg/l	5.0	ND
33	Particulate Size of Suspended Solids	mg/l	850 μm IS Sieve	Passes through 850 mm IS Sieve
34	Bio-assay SICES PL	mg/l	90% survival in 100% effluent	96% survival in 100% effluent
35	Dissolved Phusphates as PO4	mg/l	5.0 SINCES	< 0.05

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S)

ISO/IEC 17025:2005

Date: 06/07/20

Ref.: Tomplab/20/ R-1430

METEOROLOGICAL DATA FOR JUNE 2020

1. Name of Industry Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location Mines Office 3.

Sample collected by VCSPL representative in presence of TATA representative.

Date	Temperat	ure(⁰ C)	Relative H	umidity (%)	Wind Spe	eed m/sec	Wind	Rain fall
	Max	Min	Max	Min	Max	Min	Direction	(mm)
1-Jun-20	38.2	26.6	90.2	56.4	4.4	2.8	S	0.6
2-Jun-20	36.2	25.2	80.8	49.6	2.8	1.4	SSW	1.3
3-Jun-20	36.4	24.4	81.2	46.6	2.9	1.6	S	0.9
4-Jun-20	35.2	28.1	78.8	52.3	3.4	0.9	SSW	3.3
5-Jun-20	36.8	27.2	84.4	41.6	6.6	2.1	SSW	1.3
6-Jun-20	37.4	28.8	73.1	40.8	4.4	1.8-	WSW	0.2
7-Jun-20	36.6	28.2	69.2	42.6	2.8	1.4	SSW	0.3
8-Jun-20	37.4	25.2	73.8	44.2	4.4	0.7	SSW	8.9
9-Jun-20	38.2	24.4	71.4	42.2	4.2	0.7	SE.	0.1
10-Jun-20	38.8	28.2	77.2	51.2	4.1	0.7	SE	0.9
11-Jun-20	34.2	27.2	84.8	55.2	4.4	0.8	SE	11.9
12-Jun-20	32.8	26.2	90.2	59.6	4.9	1.2	SE	16.8
13-Jun-20	34.6	27.1	89.6	57.2	3.8	1.2	SE	7.8
14-Jun-20	35.21	26.8	89.2	58.8	3.2	1.5	WSW	5.3
15-Jun-20	36.6	27.2	88.2	54.4	2.6	1.3	SW	13.6
16-Jun-20	40.2	28.2	90.6	61.2	4.4	2.1	sw.	10
17-Jun-20	30.2	23.2	91.2	61.4	6.6	2.4	SW	9.3
18-Jun-20	35.2	26.2	88.2	56.2	4.9	2.6	SW	1.3
19-Jun-20	35.6	23.8	85.2	55.2	4.4	2.9	WSW	2.4
20-Jun-20	34.2	27.1	85.8	57.4	2.9	1.9	WSW	9.9
21-Jun-20	32.8	24.8	89.2	56.8	4.1	1.4	WSW	5.2
22-Jun-20	34.6	26.2	90.6	59.6	5.6	2.1	WSW	6.2
23-Jun-20	37.2	26.8	85.2	59.8	4.8	1	WSW	2.5
24-Jun-20	40.2	28.8	83.8	56.6	5.2	1.4	WSW	6
25-Jun-20	38.1	26.9	84.8	55.2	5.1	1.2	WSW	10.9
26-Jun-20	37.2	27.2	79.6	51.2	4	1.8	· SW	3.1
27-Jun-20	39.2	27.3	79.2	51.8	5.3	1.8	SW	2.2
28-Jun-20	40.2	29.6	78.8	50.6	4.9	0.9	SE	3.6
29-Jun-20	38.2	27.2	80.2	50.8	3.4	2.6	WSW	4.8
30-Jun-2910	NTE39.4	27.8	80.6	53.4	4.2	1.8	S	5.9

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Date: 06/07/20

(An Enviro Engineering Consulting Cell)

Name of Industry	••	Banjebari Manganese Mines (M/s TATA Steel Limited)
Monitoring Instruments	• •	RDS (APM 460 BL), FPS (APM 550) Envirotech. CO Analyzer, VOC Sampler
Sampling Location		AAQMS-1:H- Quaary
Sample collected by		VCSPL representative in presence of TATA representative.

K		-	(ng/m²) µg/m³) C BDL BDL	BDL BDL	BDL BDL BDL BDL	Hg/m²) BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL	Hg/m²) BDL B	Hg/m²) BDL B	Hg/m²) BDL B	Hg/m²) BDL B
	(ng/m³)	, 0		BDL	BDL BDL BDL	BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL
-	(mg/m²)	_	The state of the s	BDL							
As (na/m³)	-		BDL		BDL						
Ni (ng/m³)	-		BDL	BDI							
Pb (µg/m³)	ICIA	חחח	BDL	BDL		BDL	BDL	BDL BDL BDL	BDL BDL BDL BDL	BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL
NH ₃	(µg/m)	25.8	25.6	24.8	2	23.6	23.6	23.6	23.6 24.2 24.4 24.2	23.6 24.2 24.4 24.2 24.2 24.6	23.6 24.4 24.2 24.6 24.6 400
2	mg/m³)	0.46	0.48	0.51		0.54	0.54	0.54	0.54 0.49 0.51 0.54	0.54 0.51 0.51 0.50	0.54 0.51 0.51 0.50
0,	(µg/m³)	7.4	8.1	7.8	The state of the s	7.6	7.6	7.6	7.6	7.2 7.3 7.2 7.2 7.2 7.51	7.2 7.3 7.2 7.51
NOX	(µg/m³)	11.8	12.2	12.8		13.2	13.2	13.2	13.2 13.4 12.6 13.1	13.2 13.4 12.6 13.1 12.73	13.2 13.4 12.6 13.1 12.73
SO,	(µg/m³)	7.4	7.8	8.4		9.8	8.8	8.8	8.8 8.1 8.1 7.6	8.8 8.1 7.6 8.10	8.8 8.1 7.6 8.10
DAG	ΓM _{2.5} (μg/m³)	37.7	38.0	38.6		39.4	39.4	38.5	38.9 38.5 38.3	38.9 38.5 38.5 38.3, 38.49	38.9 38.5 38.3 38.49 60
	PM ₁₀ (ug/m³)	62.8	63.4	64.4		65.6	65.6	65.6 64.8 64.2	65.6 64.8 64.2 63.8	65.6 64.8 64.2 63.8 64.14	65.6 64.8 64.2 63.8 64.14
	Date	01.06.2020	04.06.2020	08.06.2020		11.06.2020	11.06.2020	11.06.2020 15.06.2020 18.06.2020	11.06.2020 15.06.2020 18.06.2020 22.06.2020	11.06.2020 15.06.2020 18.06.2020 22.06.2020 Average	11.06.2020 15.06.2020 18.06.2020 22.06.2020 Average Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient air quality

 g/m^3 , $NO_X < 9 \mu g/m^3$, $O_3 < 4 \mu g/m^3$, $NH3 < 20 \mu g/m^3$, $Ni < 0.01 n g/m^3$, $As < 0.001 n g/m^3$, $C_6 H_6 < 0.001 \mu g/m^3$, $O_8 < 0.001 \mu g/m^3$

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905 E-mail: visiontek@vcspl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vcspl.org Committed For Better Environment

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Enufalg

RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VOC Sampler Bamebari Manganese Mines (M/s TATA Steel Limited) VCSPL representative in presence of TATA representative. AAQMS-2:Office Building Name of Industry Monitoring Instruments Sampling Location Sample collected by

-: 4: 4:

AMBIENT AIR QUALITY MONITORING REPORT FOR JUNE 2020 (CORE ZONE)

la	of	R-	14	32							
	Mn (µg/m³)	BDL	BDL	1 =	EPA 10-3.2						
	BaP (ng/m³)	BDL	BDL	-	IS 5182 : Part, 12						
	C ₆ H ₆ (µg/m³)	BDL	BDL	's	IS 5182 : Part. 11						
	As (ng/m³)	BDL	BDL	9	APHA 22nd- 3114 C						
	Ni (ng/m³)	BDL	BDL	20	EPA 10-						
S	Pb (µg/m³)	BDL	BDL		EPA 10-						
PARAMETERS	NH ₃ (μg/m ³)	23.8	24.2	24.4	24.8	25.6	25.8	24.6	24.74	400	Air Sampling, 3rd Edn.By James P. Lodge (Method-
P4	CO (mg/m³)	89.0	0.71	0.72	0.74	0.77	69.0	99.0	0.71	4	IS 5182: Part.10- 2099
	O ₃ (µg/m³)	8.1	8.2	8.3	8.4	7.8	7.9	8.1	8.11	180	IS: 5182 (Part- 9)- 2074
	NOx (µg/m³)	19.1	18.9	18.8	18.2	17.8	17.2	16.4	18.06	08	IS: 5182 (Part- 6)- 2006
	SO ₂ (µg/m³)	14.8	15.6	15.2	14.2	14.4	13.8	13.2	14.46	08	IS: 5182 (Part-2)- 2001
	PM _{2.5} (μg/m ³)	37.1	37.6	37.4	38.3	38.5	38.6	37.9	37.91	09	USEPA CFR- 40,Part- 50, Appendix- L
	PМ ₁₀ (µg/m³)	8.19	62.6	62.4	63.8	64.1	64.4	63.2	63.19	100	1S: 5182(Part -23)-2099
	Date	02.06.2020	05.06.2020	09.06.2020	12.06.2020	16.06.2020	19.06.2020	23.06.2020	Average	Limit as per CPCB notification, New Delhi,18th Nov, 2009, for Ambient air quality	Sampling and Analysis done according to

BDL Values: SO₂< 4 μg/m³, NO_X< 9 μg/m³, O₅<4 μg/m³, NH3<20 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/ 40g/m3, Mn<0.001 µg/m

(An Enviro Engineering Consulting Cell)

Date:

MCY 35

EPA 10-3.2

IS 5182 : Part. 12

IS 5182 : Part, 11

APHA 22nd-3114 C

EPA 10-

EPA 10-3.2

IS 5182 : Part.10-2099

IS: 5182 (Part- 9)-2074

> IS: 5182 (Part- 6)-2006

> IS: 5182 (Part-2)-2001

USEPA CFR-40,Part-50, Appendix L

> IS: 5182(Part -23)-2099

Sampling and Analysis done according to

air quality

James P. Lodge (Method-

Air Sampling, 3rd Edn.By ES PV

ISO 9061: 2015 ISO 14091: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Emulab/201-R-1433

Danieball Mangallese Milles (MIS INTA Seel Ellilled)
--

VCSPL representative in presence of TATA representative.

AAOMS-3:Weigh Bridge

Monitoring Instruments

-. 4. 4.

Name of Industry

Sampling Location Sample collected by

1pler

AMBIENT AIR QUALITY MONITORING REPORT FOR JUNE 2020 (CORE ZONE)

						P.	PARAMETERS	SS.					
Date	PM ₁₀ (ug/m ³)	PM _{2.5} (µg/m³)	SO ₂ (ug/m³)	NOx (ug/m³)	O ₃	CO (mg/m³)	NH ₃	Pb (ug/m³)	Ni (ng/m³)	As (ng/m³)	C ₆ H ₆	BaP (ng/m³)	Mn (mg/m ³
02.06.2020	63.8	38.3	7.8	15.8	7.8		24.8	BDL		BDL	BDL	BDL	BDL
05.06.2020	64.4	38.6	7.2	15.4	8.1		25.2	BDL	BDL	BDL	BDL	BDL	BDL
09.06.2020	64.8	38.9	7.7	16.2	8.2	0.62	24.8	BDL	BDL	BDL	BDL	BDL	BDL
12.06.2020	65.2	39.1	7.2	16.6	8.4	99.0	24.4	BDL	BDL	BDL	BDL	BDL	BDL
16.06.2020	65.8	39.5	8.1	15.9	8.8	19.0	24.2	BDL	BDL	BDL	BDL	BDL	BDL
19.06.2020	66.4	39.8	8.4	15.2	8.2	0.56	24.8	BDL	BDL	BDL	BDL	BDL	BDL
23.06.2020	64.8	38.9	. 8.2	16.1	8.1	0.52	25.2	BDL	BDL	BDL	BDL	BDL	BDL
Average	65.03	39.02	7.80	15.89	8.23	0.59	24.77	BDL	BDL	BDL	BDL	BDL	BDL
Limit as per CPCB notification, New Delhi,18th Nov, 2009. for Ambient	100	09	80	08	180	4	400	_	20	9	s	_	ı

BDL Values: SO₂<4 μg/m³, NO_X<9 μg/m³, O₃<4 μg/m³, NH3<20 μg/m³, Ni<0.01 ng/m³, As < 0.001 ng/m³, C₆H₆<0.001 μg/m³, BaP<0.002 ng/m², Mn<0.001 μg/m³, Mn<0.001 μg/m³

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Date:

Ref.: Envlab/20/R-1

AMBIENT AIR QUALITY MONITORING REPORT FOR JUNE 2020 (BUFFER ZONE

Monitoring Instruments Name of Industry 3 5

Sample Collected by

Bamebari Manganese Mines (M/s TATA Steel Limited)

RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer VCSPL Representative in presence of TATA Representative

O ₃ (μg/m³)	00	VH.	DA			110	2	0.00
11.8	(mg/m ³)	(μg/m³)	(µg/m³)	(ng/m³)	(ng/m³)	(µg/m³)	(ng/m³)	HC (ng/m³)
	0.81	BDL	BDL	BDL	BDL	BDL	BDL	BDL
12.1	0.92	BDL	BDL	BDL	BDL	BDL	BDL	BDL
9.4	0.91	BDL	BDL	BDL	BDL	BDL	BDL	BDL
180	4	400	-	20	•	w	-	ı
IS: 5182 (Part- 9)- 2074	IS 5182: Part.10- 2099	Air Sampling, 3rd Edn.By James P. Lodge (Method-	EPA 10-	EPA 10-	APHA 22nd- 3114 C	IS 5182 : Part. 11	IS 5182 : Part. 12	ı
- 1920	IS: 5182 (Part-9)- 2074		IS 5182: Part.10- 2099	Air Sampling, IS 5182: 3rd Edn.By Part.10- Lodge 2099 (Method-	Air Sampling, 18 5182: 3rd Edn.By Part.10- James P. Lodge (Method-401)	Sampling, Samp	Sampling, Samp	Sampling, Samp

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Date: 06/07/20

Ref.: Envlab/20/ R-143[

DRINKING WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sampling location

DW-1: Near Canteen

Date of sampling

: 17.06.2020

4. Date of analysis

18.06.2020 to 24.06.2020

Sample collected by

VCSPL Representative in presence of TATA Representative

SI. No	Parameter	Testing Methods	Unit		er IS:10500-2012 on 2015 & 2018	Analysis Results
Micro	biological Analysis					DW-1
1	Total Coliform Organism MPN/100ml	APHA 9221-B	MPN/100ml	Shall not be detecta	ble in any 100 ml sample	<1.1
2	Fecal Coliforms	APHA9221-E	MPN/100ml			<1.1
3	E. Coli	APHA9221-F	MPN/100ml	Shall not be detecta	ble in any 100 ml sample	Absent
		Chen	nical Analysis			11000011
	Parameter	Testing Methods	Unit	Desirable Limit	Permissible Limit	Analysis Results
1	Colour	APHA 2120 B,	Hazen	5	I 5	CL
2	Odour	APHA 2150 B		Agreeable	Agreeable	Agreeable
3	Taste	APHA 2160 C	-	Agreeable	Agreeable	Agreeable
4	pH value at 25°C	APHA 4500H ⁺ B	NTU	6.5-8.5	No Relaxation	7.62
5	Turbidity	APHA 2130 B		1	5	<1.0
6	Total Dissolved Solids	APHA 2540 C	mg/l	500	2000	121
7	Aluminium (as Al)	APHA 3500AI B	mg/l	0.03	0.2	< 0.001
8	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0,2	1	<0.2
9	Boron (as B)	APHA 4500B, B	mg/l	0,5	2.4	<0.01
10	Calcium-(as Ca)	APHA 3500Ca B	mg/l	75	200	54
11	Chloride (as CI)	APHA 4500Cl B	mg/l	250	1000	60
12	Copper (as Cu)	APHA 3111 B	mg/l	0.05	1.5	< 0.05
13	Fluoride (as F)	APHA 4500F- D	mg/l	0.05	1.5	<0.03
14	Residual Free Chlorine	APHA 4500Cl, B	mg/l	0.2	1.5	. ND
15	Iron (as Fe)	APHA 3500Fe, B	mg/l	1.0		
16	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	No Relaxation 100	0.28
17	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	< 0.005
18	Mineral Oil	APHA 5220 B	mg/l	0.5	No Relaxation	
19	Nitrate (as NO ₃)	APHA 4500 NO3- E	mg/l	45	No Relaxation	<0.01 4.2
20	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B.D	mg/l	0.001	0.002	<0.001
21	Selenium (as Se)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.001
22	Sulphate (as SO ₄)	APHA 4500 SO42- E	mg/l	200	400	5.6
23	Alkalinity (as CaCO ₃)	APHA 2320 B	mg/l	200	600	60
24	Total Hardness(as CaCO ₃)	APHA 2340 C	mg/l	200	- 600	70
25	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	< 0.001
26	Cyanide (as CN)	APHA 4500 CN- C,D	mg/l	0.05	No Relaxation	ND
27	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	No Relaxation	<0.01
28	Mercury (as Hg)	APHA 3500 Hg B	mg/l	0,001	No Relaxation	<0.001
29	Arsenic (as As)	APHA 3114 B	mg/l	0.01	0.05	< 0.001
30	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	< 0.05
31	Chromium (as Cr ⁴⁶)	APHA 3500Cr B	mg/l		-	< 0.05
32	Poly Aromatic Hydrocarbon as PAH	APHA 6440 B	μg/l	0.0001	No Relaxation	< 0.0001
33	Pesticide	APHA 6630 B,C	mg/l		No Relaxation	Absent

Note: CL: Colbinsess ND: Not Detected.

t No. M. 22 & Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: V752017905 B. mail Wislantek@ycspl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vcsp.org, w

Committed For Better Environment

DNV-SL

Q

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

		DAILY	DAILY DRINKING WATE	G WAT		CITX AN	AALYSIS	REPOR	T FOR	R QUALITY ANALYSIS REPORT FOR THE MONTH OF JUNE 2020	NTH O	FJUNE	2020	Ref.: WabjaofR-19
		Name o Samplir Sample Sample	Name of Industry Sampling location Sample collected by	** ** **	Bamebari DW-1: Wai VCSPL Rep	Bamebari Manganese Mine OW-1: Water Treatment Plant VCSPL Representative in presen	Mines (M/ t Plant presence of T	Bamebari Manganese Mines (M/s TATA Steel Limited) OW-1: Water Treatment Plant VCSPL Representative in presence of TATA Representative	el Limited) ntative					43£
- 0	Test Parameters	Norms as pe	Norms as per IS: 10500-2012					V	Analysis Results	ilts				
		Desirable Limit	Permissible Limit	6/1/2020	6/2/2020	6/3/2020	6/4/2020	6/5/2020	6/6/2020	6/7/2020	6/8/2020	6/9/2020	6/10/2020	6/11/2020
	pH value (25°C)	6.5 - 8.5	, No Relaxation	7.66	7.61	7.66	7.58	7.55	7.54	7.56	7.58	7.61	7.66	7.62
1	Turbidity in NTU	-	5	⊽	⊽	⊽	7	⊽	V	7	⊽	⊽		⊽
2	Residual Free Chlorine in mg/l	0.2(Min.)	-	ON	ND	QN	QN	E S	QN	N N	QN	QN N	ND	ND
_		Norms as per	Norms as per IS: 10500-2012					A	Analysis Results	lts				
0	Test Parameters	Desirable Limit	Desirable Limit	6/12/2020	6/13/2020	6/14/2020	6/15/2020	6/16/2020	6/17/2020	6/18/2020	6/19/2020	6/20/2020	6/21/2020	6/22/2020
	pH value (25°C)	6.5 - 8.5	6.5 - 8.5	7.64	7.62	7.59	7.61	7.6	7.61	7.6	7.63	7.59	7.58	7.61
	Turbidity in NTU	1	-	⊽	7	⊽	⊽	>	<u>-</u>	I >	7	⊽	▽	~
	Residual Free Chlorine in mg/l	0.2(Min.)	0.2(Min.)	8	S S	QN QN	QN	Q.	ND	Q	Ð	ND	Q.	QN
8340		Norms as per	Norms as per IS: 10500-2012					Y	Analysis Results	tts				
122	Test Parameters	Desirable Limit	Desirable Limit	6/23/2020	6/24/2020	6/25/2020	6/26/2020	6/27/2020	6/28/2020	6/29/2020	6/30/2020	920		
	pH value (25°C)	6.5 - 8.5	6.5 - 8.5	7.62	7.63	7.64	7.66	7.69	7.7	7.71	7.72			
	Turbidity in NTU	1	-	⊽	$\overline{\vee}$	▽	⊽	⊽	⊽	⊽	▽			
	Residuat Free Pir	20.2(Min.)	0.2(Min.)	ND	ND	ND	N N	. QN	ND	QN	QN.	THE	STAN SE	
	NOTATION OF THE STATE OF THE ST	A Detected.	red.									Perifical Verifical Verifi	Serifical Bank Control	180/IEC 17025:2005 Date: 0 8/07/
				*		*						3		

5 % ·

2 S .

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025:2005

Ref.: Forwlab/20/R-1437

Date: 06/07/20

SURFACE WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

1. Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sampling location

SW-1: Kundra Nallah Entering H. Quarry

SW-2: Kundra Nallah Leaving H.Quarry

Date of Analysis

10.06.2020 TO 16.06.2020

Sample collected by VCSPL Representative in presence of TATA Representative

SI.				Standards	Analys	is Results
No.	Parameter	Testing Methods	Unit	as per IS-2296:1992	09.0	6.2020
				Class -'C'	\$W-1	SW-2
1	Dissolved Oxygen (minimum)	APHA 2540 C	mg/l	4	6.4	6.8
2	BOD (3) days at 27°C (max)	APHA 5210 B	mg/l	3	< 1.8	< 1.8
3	Total Coli form	APHA 9221 B	MPN/ 100 ml	5000	180	- 110
4	pH Value	APHA 4500H* B		6.0-9.0	7.59	7.62
5	Colour (max)	APHA 2120 B, C	Hazen	300	CL	CL
6	Total Dissolved Solids	APHA 2540 C	mg/l	1500	184	180
7	Copper as Cu (max)	APHA 3111 B,C	mg/l	1.5	<0.02	< 0.05
8	Iron as Fe (max)	APHA 3500Fe, B	mg/l	0.5	0.46	0.48
9	Chloride (max)	APHA 4500Cl B	mg/l	600	54	58
10	Sulphates (SO ₄) (max)	APHA 4500 SO4 ² · E	mg/l	400	6	6.4
11	Nitrate as NO ₃ (max)	APHA 4500 NO, E	mg/l	50	4	4.8
12	Fluoride as F (max)	APHA 4500F°C	mg/l	1.5	0.021	0.026
13	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B,D	mg/l	0.005	<0.001	<0.001
14	Cadmium as Cd (max)	APHA 3111 B,C	mg/l	0.01	<0.01	< 0.01
15	Selenium as Se (max)	APHA 3114 B	mg/l	0.05	< 0.001	<0.001
16	Arsenic as As	APHA 3114 B	mg/l	0.2	< 0.004	<0.004
17	Cyanide as CN (max)	APHA 4500 CN° C,D	mg/l	0.05	ND	ND
18	Lead as Pb(max)	APHA 3111 B,C	mg/l	0.1	<0.01	<0.01
19	Zinc as Zn(max)	APHA 3111 B,C	mg/l -	15	<0.05	<0.05
20	Hexa Chromium as Cr +6	APHA 3500Cr B	mg/l	0.05	<0.01	<0.03
21	Anionic Detergents (max)	APHA 5540 C	mg/l	1.0	<0.2	<0.01

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Envlab/20 [R-1438

Date: 06/07/20

DOMESTIC EFFLUENT WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location

STPW-1: STP-Inlet STPW-2: STP-Outlet

3. Date of Sampling

17.06.2020

Date of Analysis

18.06.2020 to 24.06.2020

Sample Collected By

VCSPL Representative in presence of TATA Representative

SI. No.	Parameters	Testing Methods	Unit	Standards (In land Surface	Analys	is Results
¥0.		Testing Prettions	Ont	water)	STPW-1	STPW-2
1	Colour & Odour	APHA 2120 B, C & APHA 2150 B	Hazen	Colourless/Odourless as far as practicable	<10 & pungent smell	<5 & U/O
2	Suspended Solids	APHA 2540 C	mg/l	100	92	44
3	Particulate size of SS	APHA 2540 C		Shall pass 850 micron IS Sieve	< 850	< 850
4	pH Value	APHA 4500H ⁺ B	1527	5.5-9.0	6.89	7.21
5	Temperature	APHA 2550-B	°C	Shall not exceed 5°C above the receiving water temperature	28	28
6	Oil & Grease(max)	APHA 5520 B	mg/l	10	4.2	ND
7	Total Residual Chlorine	APHA 4500CI, B	mg/l	1	ND .	ND
8	Ammonical Nitrogen (as N)	APHA 4500-NH ₃ ,C	mg/l	50	8.8	2.4
9	Total Kjeldahl nitrogen (as NH ₃)	APHA 4500-Norg C	mg/l	100	14.2	8.1
10	Free ammonia (as NH ₃)	APHA 4500-NH ₃ F	mg/I	5	ND	ND
11	BOD(3 days at 27°C (max)	IS 3025 (P-44) 1993 RA 2003	mg/l	30	32.8	8
12	Chemical Oxygen Demand as COD	APHA 5220-C	mg/l	250	210	40
13	Arsenic as As	APHA 3114 B	mg/l	0.2	<0.001	< 0.001
14	Mercury (Hg)	APHA 3500 Hg	mg/l	0.01	<0.001	< 0.001
15	Lead as Pb(max)	APHA 3111 B, C	mg/l	0.1	<0.01	
16	Cadmium as Cd (max)	APHA 3111 B, C	mg/l	2	<0.001	<0.01
17	Hexavalent Chromium as Cr +6	APHA 3500Cr B	mg/l	0.1	<0.05	<0.001
18	Total Chromium (Cr)	APHA3500-Cr, B	mg/l	2	<0.05	<0.05
19	Copper as Cu (max)	APHA 3111 B, C	mg/l	3	<0.05	< 0.05
20	Zinc as Zn(max)	APHA 3111 B, C	mg/l	5	0.58	<0.05
21	Selenium (Se) (max)	APHA 3114 B	mg/l	0.05	<0.001	
22	Nickel (Ni)	APHA 3500-Ni	mg/l	3	<0.001	< 0.001
23	Cyanide as CN (max)	APHA 4500 CN- C.D	mg/l	0,2	ND	<0.001 ND
24	Fluoride as F (max)	APHA 4500F- C	mg/l	2	0.44	0.028
25	Dissolved Phosphates (P)	APHA4500-P D	mg/l	5	0.061	
26	Sulphide (S)	APHA 4500-S ₂ -D	mg/l	2	< 0.1	< 0.05
27	Phenolic Compounds as C ₆ H ₅ OH (max)	APHA 5530 B, D	mg/l	1	<0.001	< 0.1
28	Bio-assay test	APHA 8910-C		90% survival of fish after 96 hours in 100% effluent	90% survival	96% surviva
29	Manganese (Mn)	APHA 3500-Mn, B	mg/l	2	of fishes	of fishes
30	Iron as Fe (max)	APHA3500-Fe, B	mg/l	3	0.048	< 0.005
31	Vanadium (V)	APHA 3500-V	mg/l	0.2	1.91	0.64
32	Nitrate Nitrogen	APHA 4500-NO ₃ E	mg/l	10	. <0.001	<0.001

Note: ND:Not Detected.

(An Enviro Engineering Consulting Cell)

ISO 9001; 2015 ISO 14001; 2015 ISO 45001; 2018 (OH&S) ISO/IEC 17025; 2005

Ref.: Envlab/201R-1439

Date: 06/07/20

AMBIENT NOISE MONITORING REPORT FOR JUNE 2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Monitored by : VCSPL Representative in presence of TATA Representative

Sl. No	Monitoring Date	Name of Location	Unit	Day time Equivalent Result	Standard As per - CPCB	Equ	ht time ivalent esult	Standard As per CPCB
1		Town ship	1D (1)	68	75	52		70
2	21.06.2020	Hospital	dB (A)	44	50	36		40
3		Mines Area		70	75	64		70

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Date: 06/07/20

Ref.: Forwalolaof R-1440

PERSONAL DUST SAMPLING ANLYSIS REPORT FOR THE MONTH OF JUNE 2020

Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

Sample collected by

VCSPL representative in presence of TATA representative.

Sl.No	Date of sampling	Name of the Person	Personal Number	Standard	Particulate matter as PM (mg/m³)
1		lalatendu Lohar	TSP/798688/0919		4.4
2		Santana Munda	TSP/753276/0819		4.3
3		Bigneswari Malakut	BMM-236		. 4.4
4	22.06.2020	Johan Hembram	MW0719167159	- 13	4.5
5	22.00.2020	Saraswati Tanti	MWO719166977	5 mg/m ³	4.4
6		Shradhanjali Maharana	MWO719167124		4.8
7		Bhaina Hembram	MWO719166713		4.9
8		Parinda Munda	MWO719167743		4.1

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Egylab/ad/R-1441

Date: 06/07/20

FUGITIVE EMISSION ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

Name of Industry 2.Sample Collected By

Bamebari Manganese Mines (M/s TATA Steel Limited)
VCSPL Representative in presence of TATA Representative

	Sampling Location			Jun-20
L-1	Near Sorting Yard (Joribar Block)	Prescribed Standard	Monitoring Date	13.06.2020
Parameters	Method of Measurement			
SPM	Gravimetric method	1200(mg/m³)		731
L-2	Near Stack Yard(Joribar Block)	Prescribed Standard	Monitoring Date	13.06.2020
Parameters	Method of Measurement			
SPM	Gravimetric method	1200(mg/m³)		578
•				•
L-3	Near Haul Road (Joribar Block)	Prescribed Standard	Monitoring Date	14.06.2020
Parameters	Method of Measurement	The state of the s		7 1 2,
SPM	Gravimetric method	1200(mg/m³)	O HELL TO	538

(An Enviro Engineering Consulting Cell)

Ref.: Enulub/20/R-1442

Date: 06/07/20

1SO/IEC 17025:2005

DG STACK REPORT FOR THE MONTH OF JUNE 2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location : ST1: 100 KvA DG Set

3. Date of Analysis : 20.06.2020

Sample collected by : VCSPL Representative in presence of TATA Representative

SL.No	Parameters Analyzed	Unit	CPCB LIMIT	Result
1	Stack Temperature	°C		132
2	Velocity	m/Sec		11.6
3	Concentration Of Particulate Matter As PM	mg/Nm³	50	48
4	Oxides of Nitrogen as Nox	mg/Nm ³	400	70
5	Carbon Monoxide as CO	mg/Nm ³	150	71.4
6	Non Methyl Hydrocarbon as C	mg/Nm ³		8.1

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Enwhald 20/R-1443

Date: 06/07/20

DUSTFALL ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location : DF1: Mines Area

Sample collected by : VCSPL Representative in presence of TATA Representative

Data of Counting	Total Dust		Analy	sis Result	
Date of Sampling	Fall (t/km2/month)	Co (%)	Ni(%)	Hg(%)	As (%)
01.06.2020 TO 30.06.2020	0.71	< 0.001	< 0.001	< 0.001	< 0.001

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S) ISO/IEC 17025: 2005

Ref.: Emulab/20/R-1444

Date: 06/07/20

SOIL ANALYSIS REPORT FOR THE MONTH OF JUNE 2020

1. Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location

S1: Mines Area

3. Sample collected by

VCSPL Representative in presence of TATA Representative

Date of Sampling	Co (%)	Ni(%)	Hg(%)	As (%)
20.06.2020	0.048	0.062	<0.000002	<0.000002

(An Enviro Engineering Consulting Cell)

ISO 9001: 2015 ISO 14001: 2015 ISO 45001: 2018 (OH&S)

Ref.: Fronfalof20 P-144L

Date: DL/07/20

ISO/IEC 17025:2005

OIL SEPARATION PIT REPORT FOR THE MONTH OF JUNE 2020

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling location : WW1: Workshop Water

3. Date of Sampling : 19.06.2020

4. Date of Analysis : 20.06.2020 to 26.06.2020

5. Sample collected by : VCSPL Representative in presence of TATA Representative

Sl.	Parameters	Unit	General Standards for discharge of Environmental Pollutants Part A- Effluents	Analysis Report
				June 2020
1	Colour	Hazen	5_	CL
2	Odour		Unobjectionable	U/O
3	pH at 25 degree C		5.5-9.0	7.52
4	Total Dissolved Solids	mg/l		144
5	Copper as Cu	mg/l	3.0	< 0.02
6	Fluoride as F	mg/l	2.0	0.041
7	Total Residual Chlorine	mg/l	1.0	ND
8	Iron as Fe	mg/l	3.0	0.68
9	Manganese as Mn	mg/l	2.0	1.54
10	Nitrate as NO3	mg/l	10.0	5.6
11	Phenolic Compounds as C6H5OH	mg/l	1.0	< 0.05
12	Selenium as Se	mg/l	0.05	< 0.001
13	Cadmium as Cd	mg/l	2.0	< 0.001
14	Cyanide as CN	mg/l	0.2	ND
15	Lead as Pb	mg/l	0.1	< 0.01
16	Mercury as Hg	mg/l	0.01	< 0.001
17	Nickel as Ni	mg/l	3.0	< 0.05
18	Arsenic as As	mg/l	0.2	< 0.004
19	Total Chromium as Cr	mg/l	2.0	< 0.05
20	Zinc as Zn	mg/l	5.0	<0:05
21	Hexavalent Chromium as Cr ⁺⁶	mg/l	0.1	<0.01
22	Vanadium as V	mg/l	0.2	< 0.001
23	Total Suspended Solids	mg/l	100	66
24	Temperature	0C	shall not exceed 5°C above the receiving water temperature	34
25	Dissolved Oxygen	mg/l		6.6
26	BOD at 27°C for 3 days	mg/l	30	<1.8
27	COD .	mg/l	250 -	40
28	Oil & Grease	mg/l	10	ND
29	Ammonical Nitrogen as N	mg/l	50	ND
30	Total Kjedahl Nitrogen as N	mg/l	100	3.9
31	Sulphide as S	mg/l	2.0	ND
32	Free Ammonia as NH ₃	mg/l	5.0	ND
33	Particulate Size of Suspended Solids	mg/l	850 μm IS Sieve	Passes through 850 mm IS Siev
34	Bio-assay	mg/l	90% survival in 100% effluent	98% survival in 96 HRS effluen
35	Dissolved Phosphates as PO4	mg/l	5.0 LTD #	<0.05
	- TAPLY		140	L.\

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odispa Tel.: 77520 E-mail: visiontek@wspl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at www.vcspl.org

Committed For Better Environment