

Ref. No. FAMD/FAPJ/ 403 /2019

Date: 27/11/2019

Additional Principal Chief Conservator of Forests (C), Ministry of Environment, Forest and Climate Change, Regional Office (EZ), A/3, Chandrasekharpur, Bhubaneswar -751023

Sub: Submission of six monthly compliance report on implementation of environmental safe guards of Ferro Alloys Plant, Joda for the period from Apr-19 to Oct-19.

Ref. Ministry of Environment & Forests Letter No.J-11011/03/2012-IA.II (I) Dated 5th November, 2015.

Dear Sir.

As per EIA Notification, we are herewith submitting six monthly compliance report in respect of stipulated environmental clearance condition of Ferro Alloy Plant, Joda for the period from Apr-19 to Oct-19.

We are also sending you softcopy of the report to your good office on Email: roez.bsr-mef@nic.in for your kind perusal.

We trust that measures taken towards environmental safe guards comply with the stipulated environmental clearance condition. We look forward to your further guidance which shall certainly help us in our endeavour for further improve upon our Environmental Management Practices.

Thanking You

Your's Faithfully For: TATA STEEL LTD.

Ferro Manganese Plant

Encl: Six Monthly Compliance Report (with Annexures) for Apr-19 to Oct-19 Copy to MoEF, New Delhi

" "CPCB, Zonal Office Kolkata

" "OSPCB, Bhubaneswar

" "Regional Office, Keonjhar

Ferro Alloys & Minerals Division Ferro Alloys Plant, Joda Joda – 758034, Orissa, India

Tel: 09238100945,e-mail-head.office@tatasteel.com Regd. Office: Bombay House, 24 Homi Mody Street, Mumbai - 400 001 Corporate Identity Number L27100MH1907PLC000260, Website: www.tatasteel.com

Half-Yearly Compliance Report

0n

Environmental Clearance Conditions

(MoEF Letter No. J-11011/03/2012-IA. II (I) Dated 5th November 2015)

Period: Apr'2019 - Oct'2019

Submitted By:

Ferro Alloys Plant, M/s TATA STEEL LIMITED

At/Po – Joda, District – Keonjhar, Odisha - 758034

A. **SPECIFIC CONDITION:**

Sl. No.	Specific Condition	Compliance Status (Apr'19 to Oct'19)
I	The project proponent should install 24x7 air monitoring devices to monitor air emission, as provided by CPCB and submit report to Ministry and its Regional Office.	Complied. Presently four nos. ambient air monitoring stations have been installed for manually monitoring air emission and the reports are submitted on monthly basis to SPCB, Odisha. Monitoring results for last six months i.e. Apr'19 to Oct'19 is enclosed as Annexure-I
II	Stack of adequate height & diameter with continuous stack monitoring facilities for all the stacks shall be provided and sufficient air pollution control devices viz, Electrostatic precipitator (ESP), bag house, bag filters etc. shall be provided to keep the emission levels below 50 mg/Nm3 and installing energy efficient technology.	Complied. There are four nos. of stacks in existing plant and all having adequate height and diameter. Online stack monitoring system installation has been completed. At present four nos. of Gas cleaning plants are operational among two of them are in operation and two are kept for stand-by to ensure emission level within the norms prescribed by CPCB. Same facility will be provided to forthcoming project. Stack Monitoring results for last six months i.e Apr'19 to Oct'19 is enclosed as Annexure-II.
III	The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November, 2009 shall be followed.	Complied. Existing plant emissions are within the specified limit prescribed by national ambient air quality emission standards; also, the same will be followed commissioning of forthcoming Plant. Ambient Air quality Monitoring results for last six months i.e. Apr'19 to Oct'19 is enclosed as Annexure-I.
IV	Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry and regularly monitored. Guidelines/Code of Practice issued by the CPCB should be followed. New standards for the sponge iron plant issued by the Ministry vide G.S.R. 414 (E) dated 30th May, 2008 should be followed.	Complied. Existing plant emission level is within the permissible limit. Guidelines/codes of practice issued by CPCB are followed. Monthly reports are sent to SPCB, Bhubaneswar and Regional office, Keonjhar. Monitoring results of Gaseous emission levels including secondary fugitive.
	should be followed.	levels including secondary fugitive emissions from all the sources for last

Page **3** of **53**

		six months i.e. Apr'19 to Oct'19 is enclosed as Annexure-I.
Sl. No.	Specific Condition	Compliance Status (Apr'19 to Oct'19)
V	Water sprinkling arrangements as well as dry fog system to control fugitive emission shall be undertaken.	Complied. For dry fogging one Mobile water sprinkler cum mist canon is in operation. 9 Nos. of Water sprinkling system was installed at all critical location for existing plant same will be installed after project execution.
		[Photographs enclosed as Annexure III]
VI	Tap hole emissions shall be taken to GCP system by providing proper hood and suction system.	Complied. Two nos. of Fume extraction system are in place for existing plant and same system will be provided to forthcoming project.
		[Photographs enclosed as Annexure IV]
VII	Efforts should further be made to use maximum water from the rain water harvesting sources. If needed, capacity of the reservoir shall be enhanced to meet the maximum water requirement. Only balance water requirement shall be met from other sources. Use of air-cooled condensers shall be explored and closed-circuit cooling system should be provided to reduce water consumption and water requirement shall be modified accordingly.	Being Complied. Rain water harvesting measures shall be implemented as required under the NOC from the Central Ground Water Authority wherein inputs from Regional Director, Central Ground Water Board have been incorporated. Presently, a fully functional roof top rain water harvesting project at the Administrative office in is in working stage. For Existing Plant, close circuit cooling system is in operation & same will be followed for forthcoming plant. [Refer Annexure III]
X / 7 7 7	A11 d CCl	
VIII	All the effluent should be treated and used for ash handling, dust suppression and green belt development. No effluent shall be discharged, and 'zero' discharge shall be adopted. Sanitary sewage should be	Complied. Now the existing plant is a zero-effluent discharge plant. STP is in operation for Sewage treatment, and the recycled water is being utilised for gardening purpose.

	treated in septic tank followed by the soak pit.	[Photograph is included in Annexure V]
IX	Regular monitoring of surface, sub-surface and ground water should be ensured and treated waste water should meet the norms prescribed by the State Pollution Control Board or described under the E(P) Act 1986 whichever are more stringent. Leachate study for the effluent generated and analysis shall also be regularly carried out and report submitted to the Ministry's Regional Office at Bhubaneswar, SPEB and CPCB.	Being Complied. Monitoring of ground water and surface water is being carried out on regular basis. Leachate study for effluent generated will be carried out soon. [Details of monitoring results are given as Annexure VI]
Sl. No.	Specific Condition	Compliance Status (Apr'19 to Oct'19)
X	Slag produced in Ferro Manganese (Fe-Mn) production should be used in manufacture of Silico Manganese (Si-Mn). All the other Ferro alloy slag should be used in the preparation of building materials.	Complied. Slag produced from existing FeMn plant are, partly used in the process as a raw material for FeMn production and rest are sold to the Ferro Alloys Industry.
XI	Risk and Disaster Management Plan along with the mitigation measures should be prepared and a copy submitted to the Ministry's Regional Office at Bhubaneswar, SPCB and CPCB within 3 months of issue of environment clearance letter.	Complied. Risk and disaster management plan along with the mitigation measures was submitted vide a. Letter no. FAPJ/4249/2016, dated. 01.02.2016 to the central Pollution control board, New Delhi, b. Letter no. FAP(J)/4250/2016, dated. 01.02.2016, to the Ministry of Environment & Forest, Eastern Regional Office, Bhubaneswar c. Letter no. FAP(J)/4251/2016, dated. 01.02.2016 to State Pollution Control Board, Bhubaneswar. [Copy of the letter is enclosed as Annexure-VII].
XII	Green belt shall be developed in 33% of plant area. Selection of plant species shall be as per the CPCB guidelines in	Complied. Plantation programme is regularly done. Plant species are selected as per CPCB

XIII	All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Steel Plants shall be implemented.	guidelines. In the FY-19 till date total 1676 No. of Plantation done & 4357 No. of seeding distributed. Being Followed. All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) are being followed.
XIV	At least 5% of the total cost of the project shall be earmarked towards the Enterprise Social Commitment (ESC) based on locals need and item-wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office at Chennai. Implementation of such program shall be ensured accordingly in a time bound manner.	Complied. CSR is done by TSRDS wing of TATA Steel. The details of expenditure towards CSR activity done along with details are given in Annexure XI.
XV	Provisions shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project	Complied. It has been complied. There are no labour camps within the Site. However, employees are provided with all necessary infrastructure and facilities such as fuel for cooking mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc outside the plant premises.

B. General Conditions

Sl. No.	General Condition	Compliance Status (Apr'19 to Oct'19)
I	The project authorities must strictly adhere to the stipulations made by the Odisha Pollution Control Board and the State Government.	Complied. All the stipulations made by the Odisha Pollution Control Board and the State Government are strictly followed for existing facility.
II	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEFCC).	Complied. No expansion or modifications in the plant is carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEFCC).
III	At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM10, PM2.5, SO2 and NOx are anticipated in consultation with the SPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and the SPCB/CPCB once in six months.	Complied. At present four ambient air quality monitoring stations are installed at the downward direction in consultation with the SPCB. Ambient air quality report and stack emission reports are submitted monthly to Ministry including its Regional Office at Bhubaneswar and SPCB, Bhubaneswar. [Monitoring results for last six months i.e. Apr'19 to Oct'19 is enclosed as Annexure-I]
IV	Industrial waste water shall be properly collected, treated so as to conform to the standard prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December1993 or as amended from time to time. The treated waste water shall be utilized for plantation purpose.	Complied. It has been followed. Treated waste water is utilised for plantation/gardening purpose.
V	Overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz 75 dBA (day time) and 70 dBA (night time).	Complied. It has been strictly adhered. Acoustic enclosures are provided for DG sets. [Monitoring results for last six months i.e. Apr'19 to Oct'19 is enclosed as Annexure-VIII.]
VI	Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories	Complied. Periodic medical check-ups were conducted yearly. Last medical check-up

Sl. No.	General Condition	Compliance Status (Apr'19 to Oct'19)
	Act	was done on Oct-Dec 2018 and 513 nos. of employees are examined including contractual employees. For this year the Periodic medical check-up is incontinuation. Records were maintained as per Orissa factory rule.
		[Record is enclosed as Annexure IX]
VII	The company shall develop rain water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.	Being Complied. Construction of Roof Rain water harvesting system is in progress. First Phase of construction has been completed and rest is in progress.
		S. No. Facility Description Total (Area in Acres) Catchment type Catchment type Coefficient
		1. Admin & other buildings 0.500 2. Raw Material Storage 7.533 Roof-top catchment 3. Product Storage 0.230 catchment Total 8.263
		4 Road & drainage 1.482 Roads and 0.8
		5. Truck Parking Area 0.33 Open area 0.75
		6. Green Belt 15.6 Green area 0.7
VIII	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/EMP report. Further, the company must undertake social- economic development activities in the surrounding villages like community development programmes, educational programmes, drinking water supply and health care etc.	Rural Development Society. [Details of Expenditure made towards CSR activities are given in Annexure XI]
IX	Requisite funds shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change (MoEFCC) as well as the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at	Complied. It will be adhered.

Sl. No.	General Condition	Compliance Status (Apr'19 to Oct'19)
	Bhubaneswar. The funds so provided shall not be diverted for any other purpose.	
X	A copy of clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad/Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal.	Complied. Already Complied. Intimation of obtaining Environmental Clearance is given to Zila Parishad vide letter No. FAPJ/4136/2015.
	The clearance letter shall also be put on the web site of the company by the proponent.	[Copy of Letter is given in Annexure-X]
XI	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MoEFCC at Bhubaneswar. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM10, SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	Complied. Status of compliance is uploaded in the website along with the monitored data. It will be sent to regional office of MoEFCC at Bhubaneswar, SPCB, Bhubaneswar & regional office, Keonjhar. The criteria pollutant levels PM 10,PM 2.5, SO2, NOX, CO, Ambient air parameters along with stack emission parameters are displayed at the company's main gate. [Photograph is given in the Annexure XII]
XII	The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by email) to the Regional Office of MoEFCC, the respective Zonal Office of CPCB and the SPCB. The Regional Office of the Ministry at Bhubaneswar/CPCB/SPVCB shall monitor the stipulated conditions.	Complied. It has been complied.
XIII	The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective	Complied. The Environment statement in Form V was submitted for the year 2018-19 on 28th Sep, 2019 vide letter noFAMD/FAPJ/339/2019 to SPCB, Bhubaneswar and Regional office, Annexure-XIII

Six Monthly Compliance Report to EC - Ferro Alloys Plant, Joda, M/s Tata Steel Limited for Apr'19 to Oct'19

Sl. No.	General Condition	Compliance Status (Apr'19 to Oct'19)
	Regional Office of the MoEFCC) at Bhubaneswar by e-mail.	Keonjhar and the compliance of environmental conditions is uploaded on the website.
XIV	The project proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearnces letter are available with SPCB and may also be seen at website of the Ministry of Environment, Forests and Climate Change (MoEPCC) at https://envfor.nic.in . This shall be advertise within seven days from the date of issue of the clearance letter, at least in two local newspaper that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional Office at Bhubaneswar.	. Complied. Information regarding Environmental clearance issued is published on Sambad oriya newspaper on 13 th November issue and on the statesman English Newspaper of 1th November issue. [Details of publication are given in Annexure XIV.]
XV	Project authorities shall inform the Regional Office as well as ministry. The date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work	Being Followed. It will be strictly followed

Much

Environmental Clearance Letter

(MoEF Letter No. J-11011/03/2012-IA. II (I) Dated 5th November 2015)

F. No. J-11011/03/2012-IA II (I)

Government of India Ministry of Environment, Forest and Climate Change (I.A. Division)

> Indira Paryavaran Bhawan Jor Bagh Road, Ali Ganj, New Delhi - 110003 E-mail: satish.garkoti@nic.in Tele ph.: 011: 24695316

Dated: 5th November, 2015

Mr. Ajay Sahay (Chief Resident Executive, Delhi) M/s Tata Steel Limited Jeevan Bharati Building Tower 1, 10th Floor 124 Connaught Circus New Delhi-110001

Fax No. - 91 11 23326265

Subject: Expansion of high carbon Fe-Mn alloy Plant (from 0.0504 MTPA to 0.06 MTPA) and addition of 0.06 MTPA Silico-Manganese Plant and 0.05 MTPA Mangenese Sinter Plant in existing Ferro Alloys Plant by M/s Tata Steel Limited at Joda, Keonjhar District, Environmental Clearance regarding.

Sir,

This has reference to your letter No. TSLDEL/602/2015, dated 10th March 2015 along with copies of EIA/EMP report and subsequent report and letter No. SLDEL/60/2015, May, 2015 seeking Environmental Clearance under the provisions of the EIA Notification, 2006 regarding project mentioned above. The ToR to the project was awarded by MoEFCC vide letter No. J-11011/03/2012-IA.II (I) dated 14th February, 2012 for preparation of EIA/EMP report. Additional ToRs were issued vide letter of even number dated 14th March 2013. Further, the validity of ToRs were extended vide letter dated 8th April, 2015 for a period of 1 year. The proposed project activity is listed at S.No. 3(a), in primary metallurgical industry under category 'A' of the Schedule of EIA notification 2006 and appraised by the Expert Appraisal Committee (Industry-I) of MoEFCC.

It has been noted that the proposal is for enhancement of High Carbon Ferro Manganese (HC Fe-Mn) production capacity from 0.0504 MTPA to 0.06 MTPA by design modifications in the existing 1x9 MVA furnace and with addition of 0.06 MTPA Si-Mn plant and 0.05 MTPA manganese sinter plant. About 47.135 acres of land acquired originally is in possession of M/s TSL for Ferro Alloys Plant at Joda, out of which the existing plant is established over an area of 33.4 acres and the proposed expansion will be carried out in the remaining 13.735 acres. The project site is located at 22° 01' 01.181" N to 22° 01' 25.922" N latituide and 85° 25' 32.409" E to 85° 25' 46.601" E longitudes and is at an elevation of about 468 m above Mean Sea Level (aMSL). There are no ecologically sensitive areas, national parks or wildlife sanctuaries within the buffer zone i.e.10 km radius of the study area. Five reserved forests exist within the study area. It is proposed to invest about Rs 700 Lakhs on pollution prevention, pollution control, treatment and monitoring systems. The recurring cost of environmental measures will be Rs 70 Lakhs, out of which, Rs 8 Lakhs per

annum will be used in development of green belt around the project site. The total project cost will be about Rs. 185.58 Crores. The project would provide employment to about 1500-2000 persons during construction stage and for about 156 persons during operation stage. About 108.41 Crores has been allocated towards Enterprise Social Commitment for the next five years. Following table shows details of existing and proposed units:

Sr. No.	Products	Existing Facilities	Existing Production Capacity (MTPA)	Proposed Facilities	Proposed Production Capacity (MTPA)
1	Fe-Mn	IX9MVA IX15 MVA	0.0504	1 X 12 MVA Furnace 1X 15 MVA Furnace	0.060
2	Mn- Sinter			Sinter Plant	0.050
3	Si-Mn			2X18 MVA furnace	0.060

- 3.0 The total water requirement will be about 65 m³/hr (including expansion), which will be met from Kundru nalah. The power requirement will be 63.95 MVA, which will be sourced from Odisha Power Transmission Corporation Limited (OPTCL). An area of 1.235 acres has been earmarked to store temporarily and process the slag and dust. The slag dump area will be lined and provided with garland drain connecting to a collection cum settling tank for removal of solids.
- 4.0 Public hearing for the project was conducted by State Pollution Control Board, Odisha on 12th November 2014 in the presence of Additional District Magistrate, Keonjhar district. The issues raised during public consultation inter alia include peripheral development, medical facility, education and employment, etc.
- 5.0 The aforesaid proposal was considered by the Expert Appraisal Committee (Industry-I) during its 35th meeting held on 26th -27th March, 2015 and 43rd meeting held on 2nd -3rd July, 2015. The issues raised during public hearing were discussed during the meeting After detailed deliberations, the EAC (I) recommended the project for Environmental Clearance and stipulated Specific Conditions along with other environmental conditions while considering for accord of Environmental Clearance.
- 6.0 The Ministry of Environment, Forest and Climate Change has considered the application based on the recommendation of the Expert appraisal Committee (Industry-I) and, hereby decided to grant Environmental Clearance to the above mentioned proposal for expansion of Fe-Mn alloy Plant (from 0.0504 MTPA to 0.06 MTPA) and addition of 0.06 MTPA Silico-Manganese Plant and 0.05 MTPA Mangenese Sinter Plant in existing Ferro Alloys Plant by M/s Tata Steel Limited under the provisions of EIA Notification dated 14th September 2006, as amended subject to strict compliance of the following Specific and General conditions:

A. SPECIFIC CONDITION:

 The project proponent should install 24x7 air monitoring devices to monitor air emission, as provided by CPCB and submit report to Ministry and its Regional Office.

- ii. Stack of adequate height & diameter with continuous stack monitoring facilities for all the stacks shall be provided and sufficient air pollution control devices viz. Electrostatic precipitator (ESP), bag house, bag filters etc. shall be provided to keep the emission levels below 50 mg/Nm3 and installing energy efficient technology.
- The National Ambient Air Quality Emission Standards issued by the Ministry vide G.S.R. No. 826(E) dated 16th November, 2009 shall be followed.
- iv. Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the latest permissible limits issued by the Ministry and regularly monitored. Guidelines/Code of Practice issued by the CPCB should be followed. New standards for the sponge iron plant issued by the Ministry vide G.S.R. 414(E) dated 30th May, 2008 should be followed.
- v. Water sprinkling arrangements as well as dry fog system to control fugitive emission shall be undertaken.
- vi. Tap hole emissions shall be taken to GCP system by providing proper hood and suction system.
- vii. Efforts should further be made to use maximum water from the rain water harvesting sources. If needed, capacity of the reservoir shall be enhanced to meet the maximum water requirement. Only balance water requirement shall be met from other sources. Use of air cooled condensers shall be explored and closed circuit cooling system should be provided to reduce water consumption and water requirement shall be modified accordingly.
- viii. All the effluent should be treated and used for ash handling, dust suppression and green belt development. No effluent shall be discharged and 'zero' discharge shall be adopted. Sanitary sewage should be treated in septic tank followed by soak pit.
- ix. Regular monitoring of surface, sub-surface and ground water should be ensured and treated wastewater should meet the norms prescribed by the State Pollution Control Board or described under the E (P) Act 1986 whichever are more stringent. Leachate study for the effluent generated and analysis shall also be regularly carried out and report submitted to the Ministry's Regional Office at Bhubaneswar, SPCB and CPCB.
- x. Slag produced in Ferro Manganese (Fe-Mn) production should be used in manufacture of Silico Manganese (Si-Mn). All the other ferro alloy slag should be used in the preparation of building materials.
- xi. Risk and Disaster Management Plan along with the mitigation measures should be prepared and a copy submitted to the Ministry's Regional Office at Bhubaneswar, SPCB and CPCB within 3 months of issue of environment clearance letter.
- xii. Green belt shall be developed in 33 % of plant area. Selection of plant species shall be as per the CPCB guidelines in consultation with the DFO.
- xiii. All the recommendations made in the Charter on Corporate Responsibility for Environment Protection (CREP) for the Steel Plants shall be implemented.

- xiv. At least 5 % of the total cost of the project shall be earmarked towards the Enterprise Social Commitment (ESC) based on locals need and item-wise details along with time bound action plan shall be prepared and submitted to the Ministry's Regional Office at Chennai. Implementation of such program shall be ensured accordingly in a time bound manner.
- xv. Provisions shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.

B. GENERAL CONDITIONS:

- The project authorities must strictly adhere to the stipulations made by the Odisha Pollution Control Board and the State Government.
- No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment, Forests and Climate Change (MoEFCC).
- iii. At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM₁₀, PM_{2.5}, SO₂ and NO_X are anticipated in consultation with the SPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and the SPCB/CPCB once in six months.
- iv. Industrial wastewater shall be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended form time to time. The treated wastewater shall be utilized for plantation purpose.
- v. The overall noise levels in and around the plant area shall be kept well within the standards (85 dBA) by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels should conform to the standards prescribed under EPA Rules, 1989 viz. 75 dBA (daytime) and 70 dBA (nighttime).
- Occupational health surveillance of the workers shall be done on a regular basis and records maintained as per the Factories Act.
- vii. The company shall develop rain water harvesting structures to harvest the rain water for utilization in the lean season besides recharging the ground water table.
- viii. The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA/EMP report. Further, the company must undertake socio-economic development activities in the surrounding villages like community development programmes, educational programmes, drinking water supply and health care etc.

- ix. Requisite funds shall be earmarked towards capital cost and recurring cost/annum for environment pollution control measures to implement the conditions stipulated by the Ministry of Environment, Forest and Climate Change (MoEFCC) as well as the State Government. An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at Bhubaneswar. The funds so provided shall not be diverted for any other purpose.
- x. A copy of clearance letter shall be sent by the proponent to concerned Panchayat, Zila Parishad/Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions/representations, if any, were received while processing the proposal. The clearance letter shall also be put on the web site of the company by the proponent.
- xi. The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Office of the MOEFCC at Bhubaneswar. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM₁₀, SO₂, NOx (ambient levels as well as stack emissions) or critical sectoral parameters, indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.
- xii. The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Office of MOEFCC, the respective Zonal Office of CPCB and the SPCB. The Regional Office of this Ministry at Bhubaneswar / CPCB / SPCB shall monitor the stipulated conditions.
- xiii. The environmental statement for each financial year ending 31st March in Form-V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environment (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office of the MOEFCC at Bhubaneswar by e-mail.
- xiv. The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry of Environment, Forests and Climate Change (MoEFCC) at http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance letter, at least in two local newspapers that are widely circulated in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional office at Bhubaneswar.
- xv. Project authorities shall inform the Regional Office as well as the Ministry, the date of financial closure and final approval of the project by the concerned authorities and the date of commencing the land development work.

- 7.0 The Ministry may revoke or suspend the clearance, if implementation of any of the above conditions is not satisfactory.
- The Ministry reserves the right to stipulate additional conditions if found necessary. 8.0 The Company in a time bound manner shall implement these conditions.
- The above conditions shall be enforced, inter-alia under the provisions of the Water (Prevention & Control of Pollution) Act, 1974, the Air (Prevention & Control of Pollution) Act, 1981, the Environment (Protection) Act, 1986, Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008 and the Public (Insurance) Liability Act, 1991 along with their amendments and rules.

(Dr. Satish C. Garkoti) Scientist 'F'

Copy to:-

- 1. The Secretary, Department Environment, of Govt. Odisha, Bhubneswar.
- The Chairman, Central Pollution Control Board, Parivesh Bhavan, CBD-cum-Office Complex, East Arjun Nagar, New Delhi, 110 032.
- The Chairman, Orissa Pollution Control Board, "Paribesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012.
- 4. The Additional Principal Chief Conservator of Forests (C) Ministry of Env. And Forests Regional Office (EZ), A/3, Chandersekharpur, Bhubaneswar-751023. Orissa.

Guard File / Record File/Monitoring file.

(Dr. Satish C. Garkoti) Scientist 'F'

Annexure # 1 Ambient Air quality Report From 01-04-2019 To 31-10-2019

Ambient Air Quality Monitoring Report - Apr, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

wlab/19/R-103		Andrew		40,001	1000	<0.001	<0.001	100'0>	10000	40001	4000	<0.001	As As a second	1	1000	-0.001	<0.001	40,001	<0.001	<0.001	<0.001	100'0>	<0.001	Tarra	Gas Chrotestages
		N (money		-000	40.01	4.01	<0.01	<0.00	400	000	-0.02	7 100	(Kajoa)	T and Mary	10/05	10.0>	<0.01	10.0>	40.01	40,01	<0.01	40.01	900	,	NDIR Spectroscopy
ONE)	SPRADVC	(min)		10000>	40001	40.001	000	A.901	40000	40001	10000	<0.001	Pb (uglm ³)		10000>	40.00f	H00'0>	<0.001	40,001	-00001	40.001	40001	4000	9	Medified Jacob Alfochhoiser On-Armilei
COREZ ech, CO Ann	LA ACDIES	(ugh)	100000000000000000000000000000000000000	<0.002	<0.000	40,002	<0.002	-0.002	50000	40000	<0.000	<0.0002	Bap (ng/m²)		<0.000	<0.002	<0.002	<0.002	<0.002	40,002	40,002	40,000	<0.002	8	Ingressed West and Carelo
UL-2019 (imited) 550 Environ	CI TO SOUTH	(m/dd)	fard	100'0>	40000	10000>	<0.000	-0.001	10000	-00.00	100.00	<0.001	Call.	e No 2	<0.001	10000>	0000	00'00	<0.001	100/0>	<0.000	1000	1000	3	Gravinsersic
ANG REPORT FOR APRIL-2019 (CORE ZONE) FAP., JODA (MA TATA Sted Limited) RDS (APM 460 BL), FPS (APM 550) Environeth, CO Analyzer, VCSP, Representative in reseasons of TATA B.	ALL MAIN	(mgm)	AAQMS-3: Near Ore Yard	200	<2000	2000	0005	2000	2000	<200	<200	<20.0	NII, (ugus ³)	AAOMS-2: Gate No 2	<20.0	<20.0	<20.0	<20.0	CMC.	2000	2000	2000	<20.0	901	Gracinstric Gravinerrie
REPORT MAG BL), MAG BL), Representa	D. O.	(mp(m))	AAOMS	010	24.0	0,0	010	040	970	940	c4.0	97	0 ₃ (ag/m ³)	A		<4.0	40	0.50	4.0	082	140	cto	40	α	Gas Chromata graphy
TORING I FAP.1G RDS (A)	0.0	(Jugus)		110	0.70	0.46	0.0	0.44	0.41	94:0	0.45	679	(mgm)		0.41	0.42	670	0.45	0.40	0.41	0.56	0.58	6.48	4	NDIR
AMBIENT AIR QUALITY MONITORING REPORT FOR APRIL-2019 (CORE ZONE) Name of fedurity Monitoring Instruments RDS (APM 460 BL), FPS (APM 550) Environeth, CO Annitozet, VCSPI Representative in presence of TATA Benefits and the presence of TATA B	NO.	(mph)		11.5	3.01	110	11.2	11.6	12.4	9711	13.4	12.19	NO, (mg/m)		11.2	971	10.9	707	P.II.	12.1	971	12.4	11.56	8	Modified Jacob &Bothbeier On-Arrentes
ROUALI ny struments at by	803	(100/m)	4.5	7 7	0.9	7.8	2.5	90	7.2	7.60	7.90	7.62	SO; (mph)		7.2	97	0.0	9.9	63	6.4	6.10	7.20	08'9	8	Net and Sacke sethod
BIENT AIR QUA Name of Industry Monthoring Instruments Sample collected by	PMgs	(agps)	900	21.4	33.6	73.8	23.2	22.9	22.6	33.10	21.80	22.47	(Malar)	1	407	0.14	100	41.4	42.2	42	41.50	40.80	41,40	9	Gravinensie
AMB 3. Sw Mar	PMrr	(ugh)	707	888	68.2	70.6	69.2	71.4	70.7	68.00	68.20	98769	PM ₂₀ (ug/m ¹)	200	69.8	26.8	70.8	68.8	72.2	74,4	75.2	71.80	72.18	100	Gravimente Gravimente
	Menthoring	Date	0105 64 5010	05.04.2019	09.04.2019	12.04.2019	16.04.2019	19,04,2019	23.04.2019	26.04.2019	30.04.2019	Monthly	Monitoring	49.44.4444	61073670	00.04.7019	12.04.2019	16,04,2019	19,04,2019	23.04.2019	26.04.2019	30.04,2019	Monthly Average	NAAQ Standard	Testing Method

Plot No.-M-22&23. Chundaku Industrial Estate, Patia. Bhubaneswar-751024, Dist-Kluurda, Odisha Tel.: 91-674-6451781, 7752017905

E-mail: visiontekimävahoo.co.in. vinontekimävahoo.co.in. Visit un at: www.venn.org

Committed For Better Fundrouseau

Ambient Air Quality Monitoring Report - Apr, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Mals/19/ R-104	1	(ag/ar)		<0.001	<0.001	- 1000	10000	< drawn	<0.001	<0.001	100.00	<0.001	As (ug/m²)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.000	10000	<0.001		Gar Oromotopaph 7	Date: Ollos 2	7
	Z	(ug(m)		10.65	40.01	1000	1000	0000	<0.01	<0.01	<0.01	1070>	N (mg/m²)		<0.01	<0.01	<0.01	1000	40.01	10.01	<0.01	1000	10'0>	-	NDIK Spertnesong	of Challing Serve	
ONE)	Pb	(pg/m²)	10 400	40000	10000	<0.001	<0.001	<0.001	<0.001	<0.001	40001	<0.001	Pb (m/m/)		40.001	100°0>	10000	1000	40,001	-0.001	10000	<0.00	<0.001		Modified Jacob Affectsbelov (Ne-Avande)	For Visioniek Consulta	
CORE ZA	Rap	(ng/m²)	-0.004	20,002	<0.002	C0000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	gag (mgm)		40,002	<0.002	<0.002	70000	<0.0002	<0.000	<0.000>	<0.000	<0.0012	98	Depressed West and Geolog nucleol	For Va	
IL-2019 (imited) 530) Envirote	CAR			10000	-0/101	<0.001	100.00	100'0>	<0.001	<0.001	<0.001	<0.001	C,H, (Hg/m²)	Office	40001	<0.001	100'00	10000	<0.001	<0.000	<0.001	<0.001	<0.001	9	Gisvinetric	2	
RING REPORT FOR APRIL-2019 (CORE ZONE) FAP, JOBA (Ms TATA Steel Limited) FAR AGO BL, FPS (APM 550) Envirolech, CO Analyzer, VCSPL Representative in presents of TATA Representative	NH,	(Ing/m)	AACOUSTICAR NO	2000	<20.0	0.00	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	NB, (up/m²)	AAOMS-2: General Office	C20.0	2000	7000	<20.0	000	<20.0	<20.0	<20.0	<20.0	100	Garinette		
REPORT DA CMs T. M 460 BE), Represents	ó	(10,00)	AA00	210	40	040	<4.0	0,0	<4.0	<4.0	0,0	6.15 6.18	0 ₃	ANO	040	240	070	040	970	075	<4.0	<40	<4.0	1	Gas Obvossabay apby		
FAP, JO RDS (AI VCSPL	00	(militar)	0.61	0.58	0.56	0.52	0.54	0.52	0.64	0.62	828	0.57	CO (mg/m ³)	0.40	0.46	0.48	0.41	0.49	0.42	0.41	0.44	0.46	0.45	7	NBIR Spectroscopy	,	
AMBIENT AIR QUALITY MONITORING REPORT FOR APRIL-2019 (CORE ZONE) Name of Industry Nonthoring Instruments RDS (APM 460 BL), FPS (APM 559) Envirobach, CO Attalyzer, Sample collected by VCSPL Representative in presence of TATA Representative.	NO.	(10000)	11.8	911	12.1	12,4	11.4	12.9	13.2	12.6		1223	NO, (ug/m²)	3.00	11.6	66	12.2	12.6	11.9	12.8	12.4	11.6	11.97	90	Mudified Jacob Affordhelser (Na-Arsente)		
COUALITY OF Tuments d by	SO ₃	1 man	8.1	7.9	3.6	7.2	7.8	8.1	7.6	1.0	97	897	SO; (mg/m)	1 ×	9.6	2.0	8.2	7.6	7.8	0.6	8.8	8.4	8.24	68	Westand N Geals Grank		
BIENT AIR QUA Name of Industry Monitoring Instruments Sample collected by	PMA	Appen)	34.8	35.2	35.6	30.8	31.2	32.2	E.S.	32.0	97.46	22,43	PM _{CS} (up/m²)	30.8	21.8	22.6	22.8	24.8	25,6	25.2	24.6	22.47	23.41	09	Grivinatrie	4	
AMBI 1. Nata 2. Mo 3. Sea	PM ₁₉	1	81.2	80.6	78.8	72.6	70,4	8.89	74.5	26.36	72.00	0.220	(kg/m²)	46.8	48.8	50.2	50.8	49.6	1/67	48.4	47.80	48.20	48.86	190	Gravinantsie		
	Monitoring	Date	02.04,2019	05,04,2019	09.04.2019	12.04.2019	16.04.2019	19,04,2019	25.04.2019	30.04.2019	Monthly	Average	Date	02.04.2019	05.04.2019	09:04:2019	12.04.2019	16,04,2019	19.04.2019	23.04.2019	26.04.2019	30.04.2019	Average	Standard	Testing Method		

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswur-751024, Dist-Khurda, Odisha Tel.: 91-674-6451781, 7752017905 E-mail: visiontekin@vaboo.co.in, visiontekin@granl.com, Visit us at: www.vosul.org Committed For Better Environment

Ambient Air Quality Monitoring Report - May, 19

			FAP Plar	nt Joda (TATA St	eel Ltd)							
		AMBIENT A	IR QUALITY MO	ONITORIN	G REPORT	(CORE ZO	NE)						
Ψ	Sampling Location							May-19					
AAQMS-1	Gate No.1	NAAQ Standard	Monitoring Date	03.05.2019	07.05.2019	10.05.2019	14.05.2019	17.05.2019	21.05.2019	24.05.2019	28.05.2019	31.05.2019	Monthly Average
Parameters	Method of Measurement												
PM_{10}	Gravimetric method	$100(\mu g/m^3)$		78.8	84.6	83.6	82.9	82.6	81.8	80.9	81.10	83.40	82.61
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$		35.6	38.8	39.4	36.8	36.2	35.8	34.4	38.20	39.10	37.14
SO_2	Improved West Gaeke method.	$80 (\mu g/m^3)$		8.4	8.8	8.2	8.8	8.6	8.4	8.2	8.40	9.10	8.56
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80(μg/m³)		14.2	13.6	14.1	14.8	13.6	14.5	13.89	13.80	14.60	14.12
CO	NDIR Spectroscopy method	4(mg/m ³)		0.66	0.71	0.68	0.62	0.72	0.73	0.66	0.69	0.65	0.68
03	Chemical Method	100(μg/m³)		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
NH3	Indo Phenol Blue Method	400(μg/m³)		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
С6Н6	Gas Chromatography	5(μg/m³)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Pb	AAS Method	1(μg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ni	AAS Method	20(ng/m3)		<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
As	AAS Method	6(ng/m3)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

AAQMS-2	General Office	NAAQ Standard	Monitoring Date	03.05.2019	07.05.2019	10.05.2019	14.05.2019	17.05.2019	21.05.2019	24.05.2019	28.05.2019	31.05.2019	Monthly Average
Parameters	Method of Measurement												
PM ₁₀	Gravimetric method	$100 (\mu \text{g/m}^3)$		50.8	51.6	52.8	53.4	53.8	50.6	51.2	54.20	53.80	52,47
PM _{2.5}	Gravimetric method	60 (μg/m³)		24.4	25.2	26.8	27.4	26.6	27.1	28.8	28.60	29.20	27.12
SO ₂	Improved West Gaeke method.	80 (μg/m³)		8.8	8.6	9.1	9.4	8.9	9.6	9.2	10.40	10.20	9.36
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80 (μg/m³)		12.2	11.8	12.6	12.8	11.2	11.4	12.4	11.90	12.20	12.06
CO	NDIR Spectroscopy method	100(μgm³)		0.44	0.48	0.52	0.56	0.58	0.61	0.62	0.66	0.61	0.56
03	Chemical Method	100(μg/m³)		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
NH3	Indo Phenol Blue Method	$400(\mu g/m^3)$		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
С6Н6	Gas Chromatography	5(μg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Pb	AAS Method	$1(\mu g/m^3)$		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ni	AAS Method	20(ng/m3)		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01
As	AAS Method	6(ng/m3)		<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001

Ambient Air Quality Monitoring Report - May, 19

AAQMS-3	Near Ore Yard	NAAQ Standard	Monitoring Date	03.05.2019	07.05.2019	10.05,2019	14.05.2019	17.05.2019	21.05.2019	24.05.2019	28.05.2019	31.05.2019	Monthly Average
Parameters	Method of Measurement												
PM_{10}	Gravimetric method	$100(\mu\text{g/m}^3)$		72.8	73.8	74.4	69.9	69.8	72.8	68.8	70.80	72.60	71.74
PM _{2.5}	Gravimetric method	$60 (\mu g/m^3)$		24.2	22.8	22.9	23.8	25.6	25.9	26.1	26.60	25.80	24.86
SO ₂	Improved West Gaeke method.	80 (μg/m³)		7.7	7.8	7.2	7.1	8.1	7.8	8.4	8.20	7.80	7.79
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80 (μg/m³)		10.6	10.8	11.6	11.2	12.2	12.8	13.4	12.60	13.80	12.11
CO	NDIR Spectroscopy method	100(μgm³)		0.46	0.41	0.44	0.46	0.44	0.49	0.51	0.48	0.52	0.47
03	Chemical Method	100(μg/m³)		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
NH3	Indo Phenol Blue Method	$400(\mu g/m^3)$		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
С6Н6	Gas Chromatography	$5(\mu g/m^3)$		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Pb	AAS Method	$1(\mu g/m^3)$		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ni	AAS Method	20(ng/m3)		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01
As	AAS Method	6(ng/m3)		<0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	<0.001

AAQMS-4	Gate No-2	NAAQ Standard	Monitoring Date	03.05.2019	07.05.2019	10.05.2019	14.05.2019	17.05.2019	21.05.2019	24.05.2019	28.05.2019	31.05.2019	Monthly Average
Parameters	Method of Measurement												
PM_{10}	Gravimetric method	$100 (\mu g/m^3)$		68.2	68.8	69.9	71.2	72.8	73.4	74.8	75.5	75.60	72,24
PM _{2.5}	Gravimetric method	60 (μg/m³)		42.8	43.8	43.2	44.2	45.8	45.6	44.7	41.80	40.90	43.64
SO ₂	Improved West Gaeke method.	$80 (\mu g/m^3)$		8.1	7.8	7.2	7	6.9	7.2	6.9	7.40	7.80	7.37
NO _x	Jacob & Hochhelser modified (Na-Arsenite) method	80 (μg/m³)		12.1	12.6	11.6	11.2	12.8	12.6	11.8	11.20	12.60	12.06
CO	NDIR Spectroscopy method	100(μgm³)		0.44	0.48	0.51	0.49	0.46	0.44	0.48	0.51	0.55	0.48
03	Chemical Method	100(μg/m³)		<4	<4	<4	<4	<4	<4	<4	<4	<4	<4
NH3	Indo Phenol Blue Method	$400(\mu g/m^3)$		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
С6Н6	Gas Chromatography	5(μg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	< 0.002	<0.002
Pb	AAS Method	1(μg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Ni	AAS Method	20(ng/m3)		<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01
As	AAS Method	6(ng/m3)		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	<0.001

Ambient Air Quality Monitoring Report - Jun, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 - 2007

(m/50)
(0.001 (0.01) (0.001 (0.01) (0.001 (0.01) (0.001 (0.01)
 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001
 40,001 40,002 40,002 40,002 40,002
<0.001
88
ব ব ব
0.09
15.1
9.6
44.8
84.8

Plot No.-M-22&23, Chandka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 91-674-6451781, 7752017905
E-mail: visiontekin@yahoo.co.in, visiontek@gmail.com, Visit us at: www.vespl.org

Ambient Air Quality Monitoring Report - Jun, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Physic Physic SOb. CO Co Col.		- 7 5 6 8 8 8	Name of Industry Monitoring Instruments Sample collected by	y uments i bv	** ** **	KDS (AP)	OA (M/s TA M 460 BL), I Representati	FAP, JODA (Mx TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) En- VCSPI, Representative in presence of	mited) (0) Envirotec	FAP, JODA (Miy TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. VCSPI. Representative in presence of TATA Representative	9		
Chipper Chip	Monitoring	PM	PME	Š.	NO,	00	o,	NIII	CHE	Rap		N	As
742 26.6 8.1 11.2 0.48 <4	Date	(mam)	(main)	(man)	(m/5m)	(mgm)	AAOMS	RNear Ore Va	urd nrd	(10,00)	(mod)	(mdm)	(uign)
76.4 28.2 8.2 11.6 0.56 <4 <20 <0.001 77.8 29.6 7.8 12.6 0.51 <4	4.06.2019	74.2	26.6	8.1	11.2	0.48	4	075	<0.001	<0.002	<0.001	<0.01	<0.001
77.8 29.6 7.8 12.6 0.51 <4 <20 <0.001 72.2 28.8 7.6 13.4 0.56 <4	07.06.2019	76.4	28.2	8.2	9'11	0.56	*	070	<0.001	<0.002	<0.001	<0.01	<0.001
72.2 28.8 7.6 13.4 0.56 <4 <20 <0.001 70.8 31.2 8.4 13.6 0.62 <4	11.06.2019	77.8	29.6	7.8	12.6	0.51	2	<20	<0.001	<0.002	<0.001	<0.01	<0.001
70.8 31.2 8.4 13.6 0.62 <4 <20 <0.001 <	14.06.2019	72.2	28.8	7.6	13.4	0.56	4	020	<0.001	<0.002	<0.001	<0.01	<0.001
71.2 30.8 8.2 13.2 0.64 <4 <20 <0.001 <- <- <- <- <- <- <- <	18.06.2019	70.8	31.2	8.4	13.6	0.62	4	<20	<0.001	<0.002	<0.001	<0.01	<0.001
72.8 29.2 8.2 12.9 0.66 c4 c20 c0.001 co.080 c4 c20 c0.001 c4 c50 c6.001 c50 c	21.06.2019	71.2	30.8	8.2	13.2	0.64	42	<20	<0.001	<0.002	<0.001	<0.01	<0.001
70.80 31.80 7.90 13.20 0.68 c4 c20 c0.001 c. 73.28 29.53 8.05 12.71 0.59 c4 c20 c0.001 c. PM ₁₄ PM ₁₅ SO ₅ NO ₅ CO O ₅ NH ₅ C.B.C c. pm ₁₄ PM ₁₅ SO ₅ NO ₅ CO O ₅ C.B.C c. pm ₁₄ PM ₁₅ SO ₅ NO ₅ CO O ₅ C.B.C c. 74.6 40.08 9.6 12.6 0.48 c.4 c.20 c. 75.2 41.2 9.2 13.2 0.51 c.4 c.20 c. 75.3 42.6 8.8 13.8 0.53 c.4 c.20 c. 76.4 43.8 8.1 14.6 0.56 c.4 c.20 c. 76.4 43.8 8.1 13.2 0.55 c.4 c.20 c. 76.4 43.8 9.2 12.8 0.55 c.4 c.20 c. 76.4 46.80 8.60 13.50 0.53 c.4 c.20 c. 77.4 46.80 8.60 13.50 0.53 c.4 c.20 c. 74.63 43.4 Substitute Substitu	25.06.2019	72.8	29.2	8.2	12.9	99'0	उ	<20	<0.001	<0.002	<0.001	<0.01	<0.001
T3.28 29.53 8.05 12.71 0.59 C4 C20 C0.001 PM ₁₄ PM ₁₅ SO ₂ NO ₃ CO CO O ₃ NB ₃ C4B ₃	28.06.2019	70.80	31.80	7.90	13.20	89.0	য	QZ>	100.0>	<0.002	<0.001	<0.01	<0.001
PM ₁₄ PM ₁₅ SO ₁ NO ₁ CO O ₅ O ₅ O ₆ O ₆	Monthly	73.28	29.53	8.05	12.71	0.59	4	<20	<0.001	<0.002	<0.001	<0.01	<0.001
74.6 40.08 9.6 12.6 0.48 <4 20.001 75.2 41.2 9.2 13.2 0.51 <4	Monitoring	PMs (mg/m)	PM ₂₅ (m/ga)	50; (ug/m³)	NO, (lag/ar/)	CO (mg/m)		(Hghr)	C.B. (4g/m²)	Rap (ng/m²)	Ph (up/m²)	Ni ('m/ga)	As ('m/gn)
75.2 41.2 9.2 13.2 0.51 <4 <20 <0.001 75.8 42.6 8.8 13.8 0.53 <4	4.06.2019	74.6	40.08	96	12.6	0.48	1	√20 ×20	<0.001	<0.002	<0.001	<0.01	<0.001
75.8 42.6 8.8 13.8 0.53 c.4 c.20 c.0.001 c. 76.2 42.8 8.2 14.2 0.54 c.4 c.20 c.0.001 c. 76.4 43.8 8.1 14.6 0.56 c.4 c.20 c.0.001 c. 72.8 44.6 9.1 13.2 0.55 c.4 c.20 c.0.001 c. 73.6 45.8 9.2 12.8 0.52 c.4 c.20 c.0.001 c. 72.4 46.80 8.60 13.50 0.54 c.4 c.20 c.0.001 c. 74.63 43.46 8.85 13.50 0.53 c.4 c.20 c.0.001 c. 108 60 88 89 4 140 400 5 c. 108 60 88 89 4 140 400 5 c. 108 60 80 80 80 4 140 400 5 c. 109 60 60 60 60 60 60 60	7.06.2019	75.2	41.2	9.2	13.2	0.51	25	250	<0.001	<0.002	100.0⊳	<0.01	<0.001
76.2 42.8 8.2 14.2 0.54 <4 <20 <0.001 76.4 43.8 8.1 14.6 0.56 <4	11.06.2019	75.8	42.6	90	13.8	0.53	4	80	<0.001	<0.002	<0.001	<0.01	<0.001
76.4 43.8 8.1 14.6 0.56 <4 <20 <0.001 <7	4.06.2019	76.2	42.8	8.2	14.2	0.54	4	020	<0.001	<0.002	40.001	10.0>	<0.001
72.8 44.6 9.1 13.2 0.55 <-4 <-20 <-0.001 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7 <-7	18.06.2019	76.4	43.8	8.1	14.6	0.56	2	<20 20	<0.001	<0.002	<0.001	10.0>	<0.001
73.6 45.8 9.2 12.8 0.52 c4 c20 c0.001 c4 c20 c20 c20.001 c4 c20 c20 c20.001 c4 c20 c20.001 c20.00	21.06.2019	72.8	44.6	9.1	13.2	0.55	4	07	<0.001	<0,002	<0,001	10.0⊳	<0.001
72,4 46,80 8,60 13,60 0,54 <4 <20 <0,001 <-	25.06.2019	73.6	45.8	9.2	12.8	0.52	4	070	<0.001	<0.002	<0.001	10.0⊳	<0.001
74,63 43,46 8.85 13.50 0.53 <4 <20 <0.001 <-	28.06.2019	72.4	46.80	8.60	13.60	0.54	4	070	<0.001	<0.002	<0.001	<0.01	<0.001
100 60 80 80 4 100 400 5	Monthly Average	74.63	43.46	8.85	13.50	0.53	4	<20	<0.001	<0.002	<0.601	<0.01	<0.001
Genometric Spectroscopy Method Blue Method Spectroscopy Method Genometric Genometric Spectroscopy Method Blue Method Spectroscopy Method Genometric Genome	NAAQ Standard	100	8	2	8		100	100	ş	10	10	23	3
	Testing Method		Gravitashie	West and West and Geale nethed	Medical Isosh & Bachkeier (Na-Arsenite)	NDIR Spectroscopy	Osmisi	lada Plerad Bue Method	Absorption A Besorption followed by GC	Solvent Extraction Followed by GC	AAS Method	AAS Method	AAS Method

Plot No.-M-22&23, Chandka Industrial Estate, Patia, Bhubaneswur-751024, Dist-Khurda, Odisha Tel.: 91-674-6451781, 7752017905

E-mail: visiontekin@yahoo.co.in, visionteki@gmail.com, Visit us at: www.vespl.org

Committed For Better Environment

Ambient Air Quality Monitoring Report - Jul, 19

			FAP P	ant Jod	FAP Plant Joda (TATA Steel Ltd)	Steel L	(
		AMB	AMBIENT AIR QU	ALITY MC	AIR QUALITY MONITORING REPORT (CORE ZONE)	G REPOR	r (CORE 7	(ONE)					
F	Sampling Location							Jul-19					
AAQMS-1	Gate No.1	NAAQ Standard	Monitoring Date	02.07.2019	02.07.2019 05.07.2019	09.07.2019	12.07.2019	16.07.2019	19.07.2019	23.07.2019	12.07.2019 16.07.2019 19.07.2019 23.07.2019 26.07.2019	30.07.2019	Monthly Average
Parameters	Method of Measurement												
PM_{10}	Gravimetric method	100(µg/m³)		78.2	76.4	75.2	74.8	73.2	72.6	78.1	78.40	79.4	76.26
$PM_{2.5}$	Gravimetric method	60 (µg/m³)		41.2	40.6	40.8	41.6	42.4	43.6	44.2	45.80	44.8	42.78
SO_2	Improved West Gaeke method.	80 (µg/m³)		9.2	9.8	10.2	11.6	11.4	12.8	12.2	13.20	12.6	11.31
NOx	Jacob & Hochhelser modified (Na-Arsenite) method	80(µg/m³)		14.6	15.2	16.4	14.6	13.8	15.4	16.2	18.80	16.8	15.76
00	NDIR Spectroscopy method	4(mg/m ³)		99.0	0.71	0.72	0.73	0.72	0.71	89.0	99.0	89.0	0.70
03	Chemical Method	100(µg/m³)		\$	4>	\$	4>	4>	4>	4>	\$	4>	<u>^</u>
NH3	Indo Phenol Blue Method	$400(\mu g/m^3)$		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
9Н9Э	Gas Chromatography	$5(\mu g/m^3)$		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Pb	AAS Method	$1(\mu g/m^3)$		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
ïZ	AAS Method	20(ng/m3)		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
As	AAS Method	6(ng/m3)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
AAQMS-2	General Office	NAAQ Standard	Monitoring Date	02.07.2019	02.07.2019 05.07.2019	09.07.2019 12.07.2019 16.07.2019	12.07.2019	16.07.2019	19.07.2019	23.07.2019	19.07.2019 23.07.2019 26.07.2019 30.07.2019	30.07.2019	Monthly Average
Parameters	Method of Measurement												
PM_{10}	Gravimetric method	$100(\mu g/m^3)$		56.2	58.8	60.2	61.4	58.2	56.8	60.8	61.20	64.2	59.76
$PM_{2.5}$	Gravimetric method	60 (µg/m³)		31.2	30.8	32.2	34.4	36.2	36.8	38.1	34.60	32.8	34.12
SO_2	Improved West Gaeke method.	80 (µg/m³)		8.1	8.8	9.4	8.6	9.2	10.2	11.4	11.80	10.6	9.79
$N0_x$	Jacob & Hochhelser modified (Na-Arsenite) method	80 (µg/m³)		13.8	14.2	14.8	12.6	13.4	14.1	12.8	13.60	14.4	13.74
00	NDIR Spectroscopy method	$100(\mu \mathrm{gm}^3)$		0.42	0.48	0.46	0.52	0.56	0.61	0.58	0.66	0.62	0.55
03	Chemical Method	$100(\mu g/m^3)$		< 4	<4	<4	<4	<4	<4	<4	<4	<4	4>
NH3	Indo Phenol Blue Method	$400(\mu g/m^3)$		<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
9H9O	Gas Chromatography	$5(\mu g/m^3)$		<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
BaP	Solvent Extraction Method followed by GC	1(ng/m3)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Pb	AAS Method	$1(\mu g/m^3)$		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ni	AAS Method	20(ng/m3)		<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
As	AAS Method	6(ng/m3)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001

Ambient Air Quality Monitoring Report - Jul, 19

Monthly Average)	72.22	30.84	8.44	13.82	0.59	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	Monthly Average		80.27	43.69	9.54	15.37	0.57	† >	<20	<0.001	<0.002	<0.001	<0.01	<0.001
30.07.2019		72.8	30.6	8.4	13.8	0.64	<4	<20	<0.001	<0.002	<0.001	<0.01	<0.001	30.07.2019		82.8	46.2	10.8	16.8	0.62	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
26.07.2019		71.40	32.80	7.60	14.40	89.0	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	26.07.2019		80.2	46.80	10.20	18.10	0.68	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
23.07.2019		9.07	36.8	8.8	15.8	99.0	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	23.07.2019		78.2	45.2	9.6	16.2	0.66	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
19.07.2019		71.4	32.4	9.6	15.6	0.64	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	19.07.2019		78.8	44.6	9.4	16.8	0.61	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
16.07.2019		72.4	31.8	9.1	14.2	0.62	<4	<20	<0.001	<0.002	<0.001	<0.01	<0.001	16.07.2019		82	43.2	8.8	15.2	0.52	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
02.07.2019 05.07.2019 09.07.2019 12.07.2019 16.07.2019 19.07.2019 23.07.2019 26.07.2019 30.07.2019		73.6	30.6	8.2	13.6	0.56	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	02.07.2019 05.07.2019 09.07.2019 12.07.2019 16.07.2019 19.07.2019 23.07.2019 26.07.2019 30.07.2019		81.8	44.6	9.1	14.6	0.58	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
09.07.2019		73.8	31.2	8.4	12.8	0.51	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	09.07.2019		9.08	40.8	8.6	14.2	0.56	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
05.07.2019		72.2	26.8	8.1	12.4	0.56	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	05.07.2019		81.2	40.6	9.6	13.6	0.51	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001
02.07.2019		71.8	24.6	7.8	11.8	0.48	4>	<20	<0.001	<0.002	<0.001	<0.01	<0.001	02.07.2019		8.97	41.2	8.6	12.8	0.42	† >	<20	<0.001	<0.002	<0.001	<0.01	<0.001
Monitoring Date														Monitoring Date													
NAAQ Standard		$100 (\mu g/m^3)$	$60 (\text{µg/m}^3)$	80 (µg/m³)	80 (µg/m³)	$100(\mu gm^3)$	$100(\mu g/m^3)$	$400(\mu g/m^3)$	$5(\mu g/m^3)$	1(ng/m3)	$1(\mu g/m^3)$	20(ng/m3)	6(ng/m3)	NAAQ Standard		$100 (\text{µg/m}^3)$	$60 (\mu g/m^3)$	$80 (\mu g/m^3)$	80 (µg/m³)	$100({\rm \mu gm}^3)$	$100(\mu g/m^3)$	$400(\mu g/m^3)$	5(µg/m³)	1(ng/m3)	1(µg/m³)	20(ng/m3)	6(ng/m3)
Near Ore Yard	Method of Measurement	Gravimetric method	Gravimetric method	Improved West Gaeke method.	Jacob & Hochhelser modified (Na-Arsenite) method	NDIR Spectroscopy method	Chemical Method	Indo Phenol Blue Method	Gas Chromatography	Solvent Extraction Method followed by GC	AAS Method	AAS Method	AAS Method	Gate No-2	Method of Measurement	Gravimetric method	Gravimetric method	Improved West Gaeke method.	Jacob & Hochhelser modified (Na-Arsenite) method	NDIR Spectroscopy method	Chemical Method	Indo Phenol Blue Method	Gas Chromato graphy	Solvent Extraction Method followed by GC	AAS Method	AAS Method	AAS Method
AAQMS-3	Parameters	PM_{10}	$PM_{2.5}$		NO _x	00	03	NH3	9H9O	BaP	Pb	ï	As	AAQMS-4	Parameters	PM_{10}	PM _{2.5}	SO_2	NO _x	00	03	NH3	9H9O	BaP	Pb	Ni	As

Ambient Air Quality Monitoring Report - Aug, 19

1 440 10 13180

Visiontek Consultancy Services Pvt. Ltd.

JA Q

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2015 OHSAS 18001 : 2007

Date: 03.09.19

	1. Name of Industry PAP, JODA (M/s TATA Steel Limited) 2. Monitoring Instruments RDS (APM (60 BL), FPS (APM 550) Envirolech, CO Analyzer, Sample collected by VCSP1 Representative in presence of TATA Bornessenses	Name of Industry Monitoring Instruments Sample collected by	try truments ad by		EAP, JC RDS (AI	PM 460 BL.	FAP, JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 580) Envisional of	Limited) 550) Envirote	RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. VCSPI Representative in presence of TATA B.	zer.		MVI
Monitoring	PM ₁₀ (µg/m³)	PM _{2.5} (µg/m ³)	SO ₂	NO, (Ag/m³)	(mg/m)	O (las/m²)	All NIL	C.H.	Bap (maters)	Pb Pb	Z.	As
Vale	10000					440	S	-	/ugine)	/ Indiana	(82.11)	(112/111)
02.08.2019	51.2	32.8	8.8	13.8	0.62	7	<20	<0.0001	<0.000	100.00	-0.61	10000
06.08,2019	52.8	34.6	× × ×	14.2	89.0	44 44	<20	<0.001	<0.000>	<0.001	2001	100.05
09.08.2019	20.6	35.2	7.8	14.8	0.41	4	<20	100.0>	20000>	10000	1002	20,001
13.08.2019	44.8	34.8	8.1	15.2	590	4	<20	<0.001	<0.002	<0.000	1000	0000
16.08.2019	52.6	35.2	8.4	13.6	0.62	4	85	1000>	<0.002	<0.001	1002	10002
20.08.2019	53.4	30.8	9.2	14.8	99.0	4	<20	<0.001	<0.002	<0.00	100>	CO 001
23.08.2019	48.3	31.8	10.2	15.6	0.56	7	<20	100,0>	C00.0>	10000	10.02	1000
27.08.2019	50.8	32.6	9.6	16.8	0.58	7	<20	100.0>	<0.002	40.001	<0.01	10000>
30.08.2019	90.00	342	9.4	15.4	0.62	ত	<20	100 0>	<0.002	40 001	1000	20001
Monthly Average	50.4	33.6	8.9	14.9	9.0	₹	<20	<0.001	<0.002	<0.001	<0.01	<0.001
Monitoring	PM _m (µg/m³)	PM ₂₅ (ug/m²)	SO ₂ (µg/m³)	NO, (ug/m³)	CO (ms/m)	O,	NH ₃	C,H,	Bap	Pb	Ni Market	As As
31					200	AAG	AAOMS-2:General Office	ral Office		(111/54)	(10/20)	(10%10)
02.08.2019	46.2	30.6	8.4	10.8	0.44	2	<20	<0.001	<0.002	100.00	10.05	20.001
06.08.2019	48.8	28.6	1.6	11.2	0.42	7	000	100'0>	<0.002	<0.001	10.0>	10000
09.08.2019	40.2	32.4	9.6	11.8	0.51	4	<20	<0.001	<0.002	100.0>	10.05	<0.001
13.08.2019	41.8	28.8	10.2	12.2	0.44	4	<20	<0.001	<0.002	<0.001	<0.01	<0.001
16.08.2019	42.6	30.2	8.2	10.4	0.42	₹	<20	<0.001	<0.002	<0.001	<0.01	10000>
20.08.2019	43.8	32.8	8.6	116	0.46	Ą	<20	<0.001	<0.002	<0.001	<0.01	100.00>
23.08.2019	44.6	23.4	6.4	12.8	0.52	44	<20	100 0>	<0.002	100:0>	10'0>	<0.001
27.08.2019	+4.80	30.20	10:40	13.20	0.54	4	\$ \frac{1}{20}	<0.001	<0.002	<0.001	<0.01	*00.001
30.08.2019	45.4	33.8	8.6	13.8	0.48	₹	420	<0.001	<0.002	<0.001	<0.01	100.05
Monthly Average	44.24	30.09	930	11.98	0.47	₹	<20	<0.001	<0.002	<0.001	<0.01	40,001
NAAQ Standard	160	09	98	80	+	100	400	10	16	5	20	90
Testing Method	Gravimetric	Gravimetric	Unproved West and Geale	Modified Jacob & Hochbeiser (Na-Arsenite)	NDIR Spectroscoppy	Chemical Method	Indo Phenol Blue Method	Absorption & Desorption followed by	Solvent Extraction Followed by GC	AAS Method	AAS Method	AAS Method

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905

1-mail: visiontek@vespl.org. visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

Committed For Better Environment

Ambient Air Quality Monitoring Report - Aug, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 - 2015 OHSAS 18001 : 2007

	Name of Industry Monitoring Instruments Sample collected by		Name of Industry RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. Sample collected by VCSPL Representative in presence of TATA Representative	FAP, JO RDS (AP VCSPL	DA (M/s T M 460 BL.), Representa	FAP, JODA (Ms TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) En VCSPL Representative in presence of	FAP, JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. VCSPL Representative in presence of TATA Representative	CO Analyzer Representat	ive		ŧ!
	PM ₂₅ (µg/m ³)	SO ₂ (µg/m ³)	NO, (ag/m³)	(m/sm)	03 (mg/m²)	(µg/m³) (µg/m³)	C ₆ H ₆ (µg/m ³)	Bap (ng/m³)	Pb (µg/m³)	Ni (ng/m³)	As (ng/m³)
+	25.2	7.3	11.5	0.41	AACMS	SINGAL OLG	Yard	20,000	-0.001	1000	10000
+	26.4	7.8	118	0.48	A	000	1000	\$0000 V	10000	1000	100.02
53.8	26.8	×	61	0.54	¥	420	10005	<0.002	100.0>	200	1000
53.6	27.2	7.6	12.6	190	₫	<20	<0.001	<6.002	100.0>	1000	100 U>
54.8	28.8	7.8	12.8	1970	75	<20	<0.001	<0.002	<0.001	100>	1000>
52.6	29.6	8.8	13.6	95'0	2	<20	<0.001	<0.002	<0.001	100>	<0.001
51.8	29.2	6.5	13.8	0.58	2	070	<0.001	<0.002	40001	10.0>	(0)(0>
55.20	30.20	9.10	14.20	0.48	2	00>	100.0>	<0.002	1000>	100>	100.0>
54.6 •	29.2	7.8	13.2	0.52	4	<20	<0.001	<0.002	100:0>	<0.01	100 0>
83.58	28.07	8.22	12.82	0.54	ব	<20	<0.001	<0.002	<0.001	<0.01	<0.001
PM ₁₀ (µg/m ³)	PM _{2.5} (µg/m ³)	SO ₂ (µg/m ³)	NO, (ag/m³)	CO (mg/m³)	O ₃ (µg/m³)	NH ₅ (mg/m ²)	C ₆ R ₆ (µg/m³)	Bap (ng/m³)	Pb (µg/m³)	Ni (my/m³)	As (ng/m³)
0.0	1	-		8		AAOMS-4:Gate No 2	te No 2				7
28.8	28.8	10.23	13.2	0.44	4	02	<0.001	<0.002	<0.001	<0.01	<0.001
34.6	20.2	10.6	14.2	0.52	9	200	<0.001	<0.002	<0.001	<0.01	100°0⊳
977.8	36.8	27.5	14.6	0.58	4	<20	<0.001	<0.002	<0.001	<0.01	100.0>
52.6	37.2	9.4	15.2	0.61	₹	<20	<0.001	<0.002	100.0>	<0.01	100.0>
24.8	38.2	10.8	14.8	0.62	\$	QQ	<0.001	<0.002	10000>	<0.01	<0.001
26.8	36.6	11.2	13.8	0.59	75	<20	<0.001	<0.002	100 0>	10:0>	100.0>
56.2	37.4	10.2	14.2	0.55	7	<20	<0.001	<0.002	<0.001	10:0>	100.0>
53.6	38.23	9.80	15.60	0.56	₹	<20	100'0>	<0.002	<0.001	10:0>	<0.001
52.8	40.6	9.4	16.2	0.52	₹	<20	<0.001	<0.002	<0.001	10.0>	<0.001
54.78	37.78	10.09	14.64	0.55	4	<20	<0.001	<0.002	<0.001	<0.01	<0.001
100	09	80	80	4	100	400	2	10	10	20	90
Gravimetric G	Gravimetric	Improved West and Geake method	Modified Jacob & Bochheiser (Na-Arsenite)	NDIR Spectroscopy	Chemical	Inda Phened Blue Method	Absorption & Besorption followed by GC	Solvent Extraction Followed by	AAS Method	AAS Method	AAS Method
TANCY SERVICES PAY	STANCY SERVE			(9 8		ž			GORGIA SO	SURVICES PALL	Date 03.09.19
		+		配							

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905 •
1:-mail: visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in. Visit us at: www.vespl.org

Commuted For Better Environment

Ambient Air Quality Monitoring Report - Sep, 19

Visiontek Consultancy Services Pvt. Ltd.

İå Q

ISO 14001 : 2004 OHSAS 18001 : 2007

J	(An Enviro Engineering Consulting Cell)	

ENV	ah	1	0	41	6	2	1	10	3	6		-	-	W	7	-	-	_	_	_						17/00 ASSOCIATION
	As (ng/m³)		<0.001	<0.00	<0.001	<0.001	1000	10000	10000	<0.001	<0.001	96	As	(mgm)	10000	40 00 I	100.00	1000>	<0.001	40.001	<0.001	100:0>	<0.001	90	AAS Method	Date: 01.10.19
	Ni (ng/m³)		<0.01	10.0>	10.0>	10.0>	100>	1000	<0.01	<0.01	<0.01	20	Z	(ug/m)	10.00	100>	10.0>	<0.01	<0.03	10:0>	<0.01	<0.01	<0.01	20	AAS Method	CONSULATION OF THE PROPERTY OF
er. ative	Pb (µg/m²)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	10	Pb	(HZM)	100.0>	<0.001	<0.001	<0.001	<0.001	<0,001	100'0>	100'0>	<0.001	10	AAS Method	WOISIN
FAR, JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. VCSPL Representative in presence of TATA Representative	Bap (ng/m²)		<0.002	<0.002	<0.002	<0.002	COO 00>	<0.002	<0.002	<0.002	<0.002	10	Bap	(mgm)	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	10	Solvent Extraction Followed by GC	4
amited) 550) Enviroted ence of TAT	C,H, (Hg/m²)	0.1	100.0>	100 0>	<0.001	<0.001	<0.001	<0.001	<0.001	100.0>	<0.001	100	C ₆ H ₆	ral Office	<0.001	<0.001	<0.001	<0.001	<0.001	100.0>	100.0>	<0.001	<0.001	32	Absorption & Description followed by	
FAP, JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) En VCSPL Representative in presence of	NH ₃ (µg/m ³)	AAQMS-1:Gate No	<20	<20	<20	<20	<20	<20	<20	<20	<20	400	NH ₅	AAOMS-2: General Office	<20	<20.	<20	<20	<20	<20	<20	<20	<20	400	Indo Phenal Blue Method	*
DA (M/s T. M 460 BL.), Representa	O ₃	VOVV	7	4	₹	75	4	T	₫	7	₹	100	O ₃	440	42	42	77	42	4	4>	4	3	7	100	Chemical	
KAP, JO RDS (AF VCSPL	CO (mg/m³)		0.44	0.44	0.46	0.52	0.48	0.41	0.42	0.39	0.45	7	CO (me/m²)		0.33	0.36	0.32	0.34	0.41	0.32	0.28	0.56	0.34	7	NDIR	
	NO, (µg/m³)		12.6	13.8	13.6	13.2	12.4	11.6	12.1	10.80	12.51	80	NO ₃		9.6	8.6	6.4	10.2	112	11.4	10.6	9.20	10.18	80	Medified Jacob & Hochleiser (Na-Arsenite)	
y uments 1 by	SO ₂ (µg/m³)	0.0	8.8	9.5	9.4	9.6	9.2	6.8	8.6	9.10	9.25	80	SO, (µg/m³)		4.6	4.8	5.2	2.1	5.4	4.9	0.49	2.40	2.00	80	Improved West and Geake method	9
Name or industry Monitoring Instruments Sample collected by	PM ₂₃ (µg/m²)	15.25	15.53	76.99	18.26	23.07	22.74	23.97	20 61	20 60	22.69	09	PM _{2.5} (µg/m³)	S - 97 - 97 - 57	18.26	21.95	15.01	19.15	17.8	17.14	30.00	50.02	18.85	09	Gravinsetric	*
2. Mor	PM ₁₀ (ug/m³)	15.0	7 647	48.2	975	41.2	40.6	42.8	36.8	39.20	40.83	100	PM _{to} (ug/m²)		32.6	39.2	8.97	775	30.6	30.0	17 10	0.00	33.66	100	Gravinseric	Prepared By Consultation
	Monitoring Date	62.00.3010	02.02.0019	06.09.2019	6107760701	13.09.2019	17.09.2019	20.09.2019	24.09.2019	Vonthly	Average	NAAQ Standard	Monitoring	Trans.	03.09.2019	06.09.2019	10.09.2019	13,09,2019	0107.6000	24 00 2019	27.00.2019	Monthly	Average	Standard	Testing Method	Prepared B

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.; 7752017905 E-mail: visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vespl.org

Committed For Better Environment

Ambient Air Quality Monitoring Report - Sep, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

ENV	5		17	T	T		T	100	14	1				100	100	10	10	5	10	5 2	10		7	SERVIDATE: 01. 10
	As (ng/m³)		<0.001	<0.00	9000	<0.001	0000>	<0.00	100.00	100.05	90	AS.	(ng/n	<0.000	<0.00	100.0>	100:0>	<0.001	<0.001	<0.00 × 0.00 ×	<0.001	90	AAS	Verified 1
	Ni (mg/m ³)	1.00.1	10.0>	<0.01	1000>	100>	10.05	100>	100>	000	20	N	(ng/m²)	1000	10.0>	10.0>	10.0>	<0.01	<0.01	10.00	<0.01	20	AAS	S AND
1 8	Pb (ug/m³)		100.0>	<0.001	<0.001	<0.001	<0.001	100.0>	100'0>	10000	10	Pb	(m/gr)	<0.001	<0.001	<0.001	100'0>	<0.001	100.00	1000	<0.001	10	AAS Method	
Name of Industry : FAP, JOBA (Ms TATA Steel Limited) Monitoring Instruments : RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer. Sample collected by VCSPL Representative in presence of TATA Representative	Bap (ng/m ³)		<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	10	Bap	(m/gn)	COU U>	<0.000	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	10	Solvent Extraction Followed by GC	
FAP, JODA (MS TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer, VCSPL Representative in presence of TATA Representative	C.R. (m/m)		<0.001	<0.001	<0.001	<0.001	100.0>	100'0>	100.0>	<0.001	9	C ₆ H ₆	0	<0.001	100.0>	1000>	100.0>	<0.001	1808	18/8/8	<0.001	w	Absorption & Description followed by GC	- X-
FAP, JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Env VCSPL Representative in presence of	NH ₃ (µg/m ³)	AAOMS-3: Near Ore Yard	<20	<20	<20	<20	\$20 \$20	95	85	8 8	004	NH ₃	A A OMS 4.Cate No	C20	<20	<20	QQ = 000	QQ 5	200	900	95	400	Inde Phenol Bine Method	
DA (M/s T./ M 460 BL.), Representat	O ₃ (µg/m³)	AOMS-3:N	4	3	4	42	77	2	75	য় য	100	0,5	A A O	2	4	77	3	3	4 2	2	ਰ	100	Chemical	
EAP, JO RDS (AP VCSPL)	CO (mg/m³)	1 3		0.44	0.48	0.51	0.52	0.56	0.58	0.50	4	CO	(mgm)	0.48	0.51	0.53	0.54	0.56	0.55	0.54	0.53	4	NDIR Spectroscopy	•
	NO, (ug/m³)		12.1	11.8	11.6	12.4	12.2	10.8	8.1.8	11.70	80	NO ₃	(Pg/m /	10.6	971	8.11	12.1	12.6	13.4	06:01	11.90	80	Modified Jacob &Rochheiser (Na-Arsenite)	
y uments I by	SO ₂ (ug/m ³)		6.9	8.9	9.4	9.6	6.9	7.8	8.1	8.25	98	SO ₂	(48.00)	8 4	5.1	5.2	9.0	200	62	4 80	81.8	80	Improved West and Geake method	I i
Name of Industry Monitoring Instruments Sample collected by	PM _{2.8} (µg/m ³)		20 61	25 09	18.26	18.98	25.09	25.31	18.26	21.89	09	PM _{2.5}	an Gul	16.13	22.29	14.67	15.34	25.07	15.06	20.27	18.77	09	Gravimetric	SER VICES VI
1. Nam 2. Mon 3. Sam	PM ₁₀ (ug/m³)	100 to 10	36.8	44.8	32.6	33.9	44.8	45.2	32.6	39.09	100	PM ₁₀	1 00 900	28.8	39.8	26.2	27.4	7.14	0.14	36.2	33,51	100	Gravimetric	Prepared By Anthony
	Monitoring	Date	03.09.2019	06.09.2019	10.09.2019	13.09.2019	17.09.2019	20.09.2019	24.09.2019	Monthly	NAAQ	Monitoring	Date	03.09.2019	06.09.2019	10.09.2019	13.09.2019	9007.607	24 09 2019	27.09.2019	Monthly	NAAQ Standard	Testing Method	COSIN

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905 E-mail: visiontek@vcspl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at: www.vcspl.org
* Committed For Better Environment

Ambient Air Quality Monitoring Report - Oct, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14061 - 2015 OHSAS 18001 - 2007

		As traplar?		10000	1000	-0.00	100'0>	100/05	10000	0000	10000	<0.000	190'8>		AAS Merhad		Antoning	(million		100,00	-0.001	<0.001	-0.00	100000	100/00-	10000	1000	<0.001	-	AAS Method	ILTANC)
Varie of Industry FAP, JOBA (My TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Environsch, CO Analyzer, Appendicted by		N.	(100.00)	1000	2000	1000	2000	1000	1670	10/01	<0.01	10.0>	40.01	38	AAS Method		N	(mgm)	1000	100>	-0.61	10/0/	1000	100-	<0.01	10'0>	1000	III)	20	AAS Method	TANGO WALLES OF THE PORT OF TH
llyzer.		HP (Party)	I Indian	40.001	10000	10000	10000	20,000	10000	- Childh	40,001	100'0-	108785	-	AAS		ε	(adjac)		1000	10000	01001	-0.001	10000-	-0.005	10000	ion's	10070>	-	Method	0,874 # 0
ech, CO Anz	presentative	HaP (nertur ³)		<0.002	<0.000	50000	CHANN	<0.000	<0.000	<0.007	<0.007	<0.002	-0.002	-	Selvent Extraction Method followed by	20	del .	(Mgm.)		41002	2000	-0000	20000	20000	<0.007	<0.002	4444	rang.	Salvent	Februario s Method Silbored by GC	
FAP, JODA (MM TATA Steel Limited) SES (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer NOTES	200	C,H,			190 05	-0.001	<0.00	10000>	1000	10000>	100.0>	40001	100%	s	Gas Chromatogra phy	-	C,H,	1		10000	10000	10000	100.00	100'00	<0.001	-0.001 -0.001	-0.000	Table 1		Gas Chromatogr aphy	
FAP, JODA (Ms TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envices	e iti presenc	(upim' (upim')	LiGate No-1	87	8	<20	90	420	<20	8	(C>	8	426	400	Indo Phenal Blue Method		NH,	AACHO T.C COR.	seneral Office	900	0,00	8	Ø	400	8	900	300		+	Phrost Slast - Method	
DA (M/s T M 460 BL)	cpresentativ	(ingin)	AAOMS	7	7	70	100	ō	5	ø	IJ	v	₹	100	Chemical		(O)	AACOME 1-	ANGRESIA	12	12	4	7	9	0	0	2	180		Chemical Method	
RDS (AF	VESTL	(mg/m3)		0.41	0.42	0.44	046	0.51	0.42	0.44	0.41	8.45	0,44	7	NDIR Spectroscopy method	0,0	(ms/m ²)		0.41	0.46	0.42	920	0.41	0.46	0.13	0.31	673		KDID	Spectroscopy method	
	VON	(mjm)		800	14.6	15.2	16,4	15.8	15.6	14.8	16.20	13/40	15.59	8	Jacob & Hechtelser medified	000	(man)		10.2	808	13.4	14.1	19.2	16.8	17.40	28	14.70	90		Bachheber	
ruments d by	500	(mg(m)		77	7.0	107	12	911	10.8	124	077		18.36	8	Improve d West Gaeke method,	08	(miles)		6.8	8.4	901	13.2	16.8	911	12.10	11.40	10.59		1	d West Greke method.	
Monitoring Instruments Sample collected by	PM.	(milan)	30,000	20.27	20,00	27.46	30.13	29.01	28.32	27.53	10,60	-	15.03	8	Gravimetri c method	PMs	(m/m)		1594	3427	37.07	27.59	31.47	13.82	31.81	36.51	33.78	9		c nethod	
3. San	PMS	(m)(m)	63.0	6.75	44.0	25.0	20.8	21.0	20.0	40.8	64.80	* 17.00	98786	100	Gravimetri c method	PMu	(midel)		909	61.2	66.2	187	56.7	68.4	56.80	68.20	60.32	100	-		No pauling By
	Monttoring	Date	61 10 2018	04,10,7019	(0) 50 7010	11.16.7010	16 14 1010	18.10 3016	37 10 3618	15.10 7019	29,16,1019	Monthly	Average	Standard	Testing Method	Marketha	Algoniering.	2007	01.16.2019	04.10.2019	11.00.5019	15.10.3019	18.10.2019	22,16,2019	25.10.2019	29,10,2019	Average	NAAQ Sendard		Testing Method	OSIA # OI

Ambient Air Quality Monitoring Report - Oct, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 - 2015 -OHS AS 18001 - 2007

SEATOR	AAS Method		1000>	10000	10000	100.0>	100,00	100%	100'0>		As (ng/m²)	AAS Method		<0.001	-0.001	190'0>	1000	100/0>	100.00	10000-	<0.00	As (ng/m²)	
	AN WARREST	38	<0.01	100>	1000	40.03	1000	1000	10/01		N (mg/m)	AAS Method	n	400	100-	100	100>	-0.0	-0.01	1000	1000-	(mg/m/)	
WOISIN #	Method	-	4000	100.00	-00,001	100%	45,001	1000	<0.001	1000	Pb (hg/m²)	AAS	-	<8.801	100/0>	<0.000	<0.00	<0.001	1000>	10000-	100 tb	(,m/80)	752.
	Salvent Extraction Method followed by GC	-	<0.002	<0.000	-d0002	<0.002	c0) 00.5	<0.0002	-0/05	-0.604	(mgm)	Solvent Extraction Method followed by GC	-	-di,002	<0.002	-0.002	<0.002 -0.002	<0.002	-0.002	-0.002 -0.002	<0.002	(agint)	h, CO Analy resentative.
	Gas Chromathgra phy	w	10000>	1000	10000	10000	1000>	4000	<0.001	1000	Calls (pg/m²)	Gas Chromatogra phy	eq.	1009>	10000	1000>	10000	10000>	<0.000	0000	-0.001	(m)(m)	FAP., JODA (M/s TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Envirotech, CO Analyzer: VCSPL, representative in presence of TATA representative.
	Inde Phend Blue Method	490	8	000	430	8	420	88	<20	AAQMS-4/Near Gate-2	NHs (Hg/m²)	Phenal Phenal Method	809	₽	<20	90	8 8	00	439	8 8	400	Ugelm' (legim")	PAP, JODA (Ms TATA Steel Limited) RDS (APM 460 BL), FPS (APM 550) Env VCSPL representative in presence of TAT
	Chemical	100	7	7	9	2 2	0	0 0	U.	AAQMS-4	(hg/m²	Chemical	100	J	7	U	J 3	7	77	7 7	7 7	(Dagler) AAOMS-3:0	A (NI/s 1./ // 460 BE.), presentative
	NDIR Spectroscopy method		6776	0.48	0.46	0.55	0.57	150	0.46	0.44	CO (mg/m3)	NDIR Spectrosce py atechod	-	6750	190	0.46	0.44	950	0.51	0.42	0.48	(mg/m3)	RDS (AP) VCSPL re
	Jacob & Bookhelser modified	8	12.87	14.80	15.20	13.6	13.1	12.6	2112	801	NO, (mg/m²)	Jacob & Hochledser modified	30	14.81	16.10	15.60	13.8	15.6	15.2	14.8	13.6	(m)(m)	
	Improve d West Gacke method.	2	888	R	9.80	10.0	9.6	1 10	8 0	6.2	SO; (ug/m²)	Impraved West Gaeler method.	8	275	0711	11.20	8.4	10.3	10.2	96	9 1	(mign)	ments
	Gravimetri c method	99	30.43	31.81	31.02	34.05	31.81	28.67	25.87	27.33	PM ₂₃ (sepim ²)	Gravimetri c method	3	32.27	94.03	31.58	29.79	31.02	34.50	34.38	31.81	(mile)	Monitoring Instruments Sample collected by
ET SERVICES	Gravinse tric method	00	8433	56.80	55.4	62.2	26.8	51.2	46.2	18.8	PM ₁₀ (pg/m²)	Gravimetri	190	57.62	1000	56.40	532	254	919	68.4	56.8	(/m/dn)	3. Smin
Denvices of Line of Line of Line of State of Sta	Testing Method	NAAQ Standard	Monthly Average	29,10,2019	25,10,2019	22.10.2019	15,10,2019	11.10.2019	08.10.2019	01.10.20419	Monitoring Date	Testing Method	Standard	Average	Menthly	25,16,2019	22.16,2019	18.16.2019	11,10,2019	08,10,2019	01.10.2019	III.	

Annexure-II

Stack Emission Monitoring Report from 01-04-2019 To 31-10-2019

Stack Emission Monitoring Report - Apr, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

Ref. Envlab/19/R-105

Date 01/05/2019

STACK ANALYSIS REPORT FOR THE MONTH OF APRIL-2019

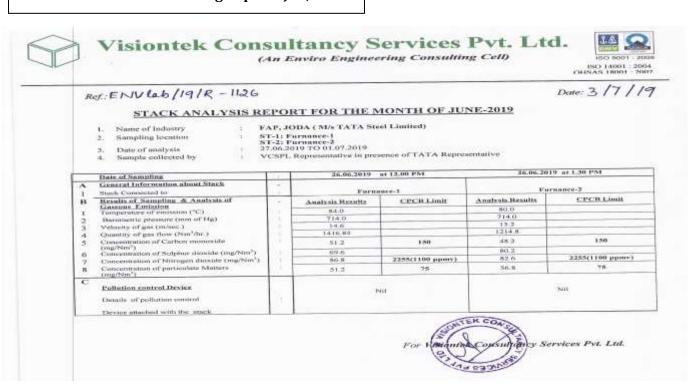
1. Name of Industry

FAP, JODA (M/s TATA Steel Limited)

2. Sampling location

ST-1: Furnance-1

Date of analysis ST-2: Furnance-2
 18.04.2019 TO 22.04.2019
 Sample collected by VCSPL Representative in presence of TATA Representative


	Date of Sampling		17,04,2019	at 16,30 am	17.04.2015	at 12.05 pm	
A 1	General Information about Stack Stack Connected to	-	Fari	tunce-I	Furnance-2		
В	Results of Sampling & Analysis of Gaseous Emission	-	Analysis Results	CPCB Limit	Analysis Results	CPCB Limit	
J.	Temperature of emission (°C)	100	88.0		74.0		
2	Barometric pressure (mm of fig)	100	714.0		714.0		
3	Valocity of gas (m/sec.)	1 33	12.4		13,6		
4	Quantity of gas flow (Nm ¹ /br.)	1.1	1248.0		1169.0		
5	Concentration of Carbon monoxide (mg/Nm ³)	10	41.2	150	38.0	150	
6	Concentration of Sulphur dioxide (mg/Nm²)		70.8		81.2		
7	Concentration of Narogen dioxide (mg/Nm²)	11	82.0	2255(1106 ppmv)	86.2	2255(1100 ppmv	
8	Concentration of particulate Matters	1	240	The state of the s	300000	agostrion bluns	
770	(mg/Nm ²)		38.0	75	46.0	75	
C	Pollution control Device Details of pollution control Device mached with the stack	in .	1	ea	Nils		

For Vision of Consultancy Services Pvt. Ltd.

Stack Emission Monitoring Report - May, 19

1.	Name of Industry		FAP, Jo	oda (M/s TA	TA Steel Limite	ed)
	Date of Sampling		22.05.2019 a	t 11.45 AM	22.05.2019 a	t 12.30 PM
A	0 11111 111 11111 1111 1111 1111 1111 1111		Furnan	ce-1	Furnan	ce-2
1	Stack Connected to	:		CDCD		
В	Results of Sampling & Analysis of		<u>Analysis</u>	CPCB	1	anan
	Gaseous Emission		Results	<u>Limit</u>	Analysis Results	CPCB Limi
1	Temperature of emission (°C)	:	80		78	
2	Barometric pressure (mm of Hg)	:	714		714	
3	Velocity of gas (m/sec.)	:	12.8		14.1	
4	Quantity of gas flow (Nm ³ /hr.)	:	1230		1182	
5	Concentration of Carbon monoxide (mg/Nm ³)	:	44.6	150	40.6	150
6	Concentration of Sulphur dioxide (mg/Nm ³)	:	72		82.8	
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	84	2255(1100 ppmv)	90	2255(1100 ppmv)
8	Concentration of particulate Matters (mg/Nm³)	:	42	75	48	75
C	Pollution control Device					
	Details of pollution control		Nil		Nil	
	Device attached with the stack					
D	Remarks	:				

Stack Emission Monitoring Report -Jun, 19

Stack Emission Monitoring Report -Jul, 19

1.	Name of Industry			FAP, Joda (M/s TA	TA Steel Limited)	
	Date of Sampling	:	24.07.20	019 at 12.00 PM	24.07.2019	at 2.00 PM
A	0 0 110 1 111 0 1 111 0 1 1 1 1 0 1 1 1 1 0 1		F	urnance-1	Furnar	nce-2
1	Stack Connected to	:				1
В	Results of Sampling & Analysis of		Analysis D	CDCD II 14	4 1 ' D 14	CDCD I ::4
<u> </u>	Gaseous Emission		Results	CPCB Limit	Analysis Results	CPCB Limit
1	Temperature of emission (°C)	:	82		80	
2	Barometric pressure (mm of Hg)	:	714		714	
3	Velocity of gas (m/sec.)	:	14.8		15.6	
4	Quantity of gas flow (Nm ³ /hr.)	:	1426.6		1311.2	
5	Concentration of Carbon monoxide (mg/Nm ³)	:	56.2	150	50.6	150
6	Concentration of Sulphur dioxide (mg/Nm ³)	:	74.2		82.8	
7	Concentration of Nitrogen dioxide (mg/Nm ³)	:	91.6	2255(1100 ppmv)	94.2	2255(1100 ppm)
8	Concentration of particulate Matters	:	50.8	75	58.8	75
С	Pollution control Device					•
	Details of pollution control	:		Nil	Nil	
	Device attached with the stack					
D	Remarks	:				

Stack Emission Monitoring Report -Aug, 19

	Name of the Industry	:]	FAP, Joda (M/s TAT	TA Steel Limited)			
	Date of Sampling	:	26.08.201	9 at 11.15 AM	26.08.2019 at 12.00 PM			
A	General Information about Stack		Fu	rnance-1	Furnance-2			
1	Stack Connected to	:						
В	Results of Sampling & Analysis of Gaseous Emission		Analysis Results	CPCB Limit	Analysis Results	CPCB Limit		
1	Temperature of emission (°C)	:	88		90			
2	Barometric pressure (mm of Hg)	:	714		714			
3	Velocity of gas (m/sec.)	:	15.2		16.1			
4	Quantity of gas flow (Nm ³ /hr.)	:	1511.2		1420.8			
5	Concentration of Carbon monoxide (mg/Nm³)	:	61.2	150	52.6	150		
6	Concentration of Sulphur dioxide (mg/Nm³)	:	71.2		78.6			
7	Concentration of Nitrogen dioxide (mg/Nm³)	:	88.6	2255(1100 ppmv)	90.8	2255(1100 ppmv)		
8	Concentration of particulate Matters (mg/Nm³)	:	46.2	75	52.6	75		
С	Pollution control Device		,			·		
	Details of pollution control	:		Nil	Ni	1		
	Device attached with the stack							
D	<u>Remarks</u>	:						

Stack Emission Monitoring Report -Sep, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: ENV lab /19/R - 4439

Date: 01. 10. 19

STACK ANALYSIS REPORT FOR THE MONTH OF SEPTEMBER-2019

1. Name of Industry

FAP, JODA (M/s TATA Steel Limited)

2. Sampling Location

ST-1: Furnance-I ST-2: Furnance-2

3. Date of Analysis

26.09.2019 TO 30.09.20190

4. Sample Collected by

: VCSPL Representative in presence of TATA Representative

	Date of Sampling	1 4	25,09,2019	at 10.30 AM	25.09.2019	at 12.00 PM			
A 1	General Information about Stack Stack Connected to	100	Furi	sance-1	Furnance-2				
В	Results of Sampling & Analysis of Gaseous Emission		Analysis Results	CPCB Limit	Analysis Results	CPCB Limit			
1	Temperature of Emission (°C)	9	66		74				
2	Barometric Pressure (mm of Hg)	1	714		714				
3	Velocity of Gas (m/sec.)	1	13.8		14.6	9818791 - 1 - 5			
4	Quantity of Gas Flow (Nm ¹ /hr.)		1368.9		1164.8				
5	Concentration of Carbon monoxide (mg/Nm³)	1	46.8	150	47.4	150			
6	Concentration of Sulphur Dioxide (mg/Nm ³)	1	61.6		66.4				
7	Concentration of Nitrogen Dioxide (mg/Nm ³)	-	82.8	2255(1100 ppmv)	80.6	2255(1100 ppmv)			
8	Concentration of Particulate Matters (mg/Nm³)	(F)	46.8	75	42.6	75			
С	Pollution control Device Details of pollution control Device attached with the stack			Nil		รับ			

Stack Emission Monitoring Report -Oct, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

28O 14001 : 2015 OHSAS 18001 : 2007

Ref.: Enviabli91 R- 5148

Date: 1-11-19

STACK ANLYSIS REPORT FOR THE MONTH OF OCTOBER-2019

1. Name of Industry

: FAP, JODA (M/s TATA Steel Limited)

2. Monitoring Instruments

ST1: Furnace-1 ST2: Furnace-2

3. Sample collected by

VCSPL representative in presence of TATA representative.

Date Of Sampling	1:	24.10.20	19 at 10.20 AM	24,10,2019	at 11.30 AM
A. General Information about Stack Stack Connected to	13	F	irnace-1	1000	nace-2
B. Results of Sampling & Analysis of Gaseous Emission:	1.2	Results	CPCB Limit	Results	CPCB Limit
1.Temperature of emission (°C)		68	**	76	
2.Barometric pressure (mm of Hg)	133	714		714	
3. Velocity of gas (m/sec.)	1.3	14.2	***	15.6	
4.Quantity of gas flow (Nm3/hr.)	1.2	1412.9		1218.8	
5.Concentration of Carbon monoxide		48.2	150	51.2	150
(mg/Nm³)		62.2	**	68.2	
 Concentration of Sulphur dioxide (mg/Nm³) 	ŧ	84.1	2255(1100 ppmv)	82.4	2255(1100
7.Concentration of Nitrogen dioxide (mg/Nm³)			ppinty		ppmv)
 Concentration of particulate Matters (mg/Nm³) 	1	48.8	75	46.6	75
Pollution Control Device					
Details of pollution control					
Device attached with the stack : Nil					
Remark	s				

Annexure-III

Mobile High Velocity Water Sprinkler cum Mist Canon

Dry Fogging System for Fugitive dust suppression

RAIN WATER HARVESTING

S. No.	Facility Description	Total (Area in Acres)	Catchment type	Runoff coefficient
1.	Admin & other buildings	0.500		
2.	Raw Material Storage	7.533	Roof-top	0.0
3.	Product Storage	0.230	catchment	0.9
	Total	8.263		
4	Road & drainage	1.482	Roads and pavements	0.8
5.	Truck Parking Area	0.33	Open area	0.75
6.	Green Belt	15.6	Green area	0.7

Annexure-IV

Fume Extraction System

Fume Extraction System For existing Plant

Annexure - V

Sewage Treatment Plant Installed at FAP, Joda

Annexure - VI

Ground water Analysis Report

Ground Water Quality Analysis - Jun, 19

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 CHESAS 18001 : 2007

Ref.: ENVlab/19/R-1133

Date: 3/7/19

GROUND WATER TEST WELL ANALYSIS REPORT FOR THE MONTH OF JUNE-2019

FAP, JODA (M/s TATA Steel Limited) Name of Industry GW-1: Upstream Ground Water From Test Well GW-2: Downstream Ground Water From Test Well 15.06.2019 Sampling location Date of sampling 3. 17.06.2019 to 24.06.2019 Date of analysis

totive in oresence of TATA Representative

5. St	imple collected by	VCSPL Representative	in presence of	of TATA Representative		
St. No	Parameter	Testing Methods	Unit	Standard as per	Analysis Results	
DI. ING	T an america	A COLUMN TO THE OWNER.		IS -10500:2012	GW-1	GW-2
Essential Ci	varacteristics					-
1	Colour	APHA 2120 B, C	Hazen	5	4	1
2	Odour	APHA 2150 B	- 11	Agreeable	Agreeable	Agreea/ble
3	Taste	APHA 2160 C	- 44	Agreeable	Agreeable	Agreeable
4	Turbidity	APHA 2130 B	NTU	1	<1	<i< td=""></i<>
- 5	pH Value	APHA 4500H° B	-	6.5-8.5	7.12	7.62
.6	Total Hardness (as CaCO ₃)	APHA 2340 C	mg/l	200	71.2	80.8
7	fron (as Fe)	APHA 3500Fe, B	mg/l	0.3	0.22	0.29
18.	Chloride (as Cl)	APHA 4500CFB	mg/l	250	56	72
9	Residual, free Chlorine	APHA 4500CL B	mg/l	0.2	ND	ND
Destrable C	haracteristics				A1444	
10	Dissolved Solids	APHA 2540 C	mg/l	500	220.0	246.0
11	Calcium (as Ca.)	APHA 3500Ca B	mg/l	75	28.8	32.6
12	Magnesium (as Mg)	APHA 3500Mg B	mg/L	30	19.6	21.2
13	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	<0.05	<0.05
14	Manganese (us Mn)	APHA 3500Mn B	mg/l	0.1	0.021	0.026
15	Suiphate (as SO ₄)	APHA 4500 SO ₄ 3 E	mg/l	200	6.8	7.6
16	Nitrate (as NOs)	APHA 4500 NO; E	mg/l	45	3.1	3.6
17	Fluoride (as F)	APHA 4500F C	mg/l	1	0.016	0.021
18	Phenolic Compounds (as CcHoH)	APHA 5530 B,D	mg/l	0.001	<0.001	<0.001
19	Mercury (as Hg)	APHA 3500 Hg	mg/I	0.001	<0.001	<0.001
20	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	<0.001	<0.001
21	Selenium (as Se)	APHA 3114 B	mg/I	0.01	<0.001	< 0.001
22	Arsenic (as As)	APHA 3114 B	mg/l	0.01	<0.001	<0.001
23	Cyanide (as CN)	APHA 4500 CN C.D	mg/l	0.05	ND	ND
24	Lead (as Pb)	APHA 3111 B,C	ma/t	0.01	< 0.001	< 0.001
25	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	< 0.05	<0.05
26	Amonic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	<0.2	<0.2
27	Chromium (as Cy**)	APHA 3500Cr B	mg/l		<0.05	< 0.05
28	Mineral Oil	APHA 5220 B	mg/l	0.5	<0.01	<0.01
29	Alkalinity	APHA 2320 B	mg/l	200	124	152
30	Aluminium as(Al)	APHA 3500ALB	mg/l	0.03	<0.001	<0.001
31	Boron (as B)	APHA 4500B, B	mg/l	0.05	<0.01	< 0.01
32	Poly Aromatic Hydrocarbon as PAH	APHA 6440 B	ра/1	-	< 0.001	<0.001
-33	Pesticide	APHA 6630 B,C	Egm	Absent	Absent	Absent

Note: CL: Colourless, ND: Not Detected.

Plot No.-M-22&23, Chandka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 91-674-6451781, 7752017905 E-mail: visiontekin@yahoo.co.in, visiontek@gmail.com, Visit us at: www.vcspl.org Committed For Better Environ

Ground Water Quality Analysis - Sep, 19

Visiontek Consultancy Services Pvt. Ltd. 🚨

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref. ENVlab/19/R-4443

Date: 01.10.19

GROUND WATER QUALITY ANALYSIS REPORT FOR THE MONTH OF SEPTEMBER-2019

Name of Industry

: FAP, JODA (M/s TATA Steel Limited)

Sampling location

GW-1: Upstream Ground Water From Test Well

GW-2: Downstream Ground Water From Test Well

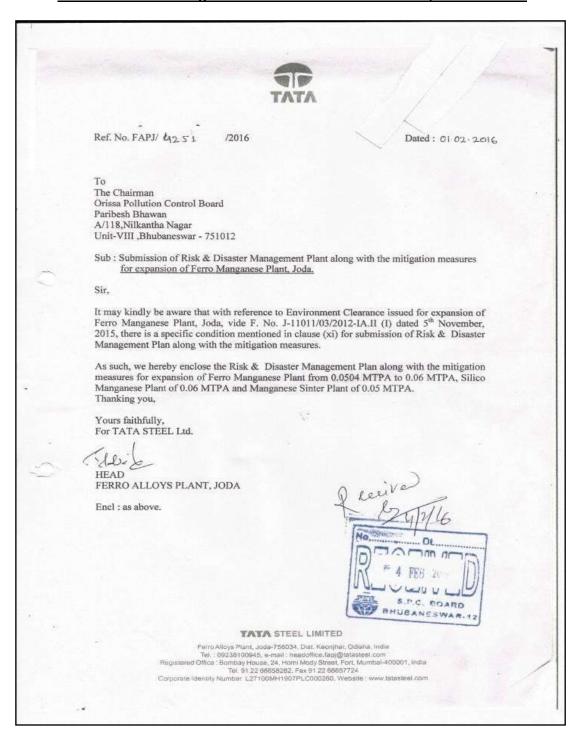
Date of sampling
 Date of analysis

20.09.2019 21.09.2019 TO 27.09.2019

Sample collected by

: VCSPL Representative in presence of TATA Representative

SL No	Parameter	Testing Methods	Unit	Standard as per IS -10500:2012 Amended on 2015 & 2018		Analysis Results	
177.875				Acceptable Limit	Permissible Limit	GW-I	GW-2
Essen	tial Characteristics	- Warnel Company					
U	Colour	APHA 2120 B, C	Hazen	5	15	1	i
2	Odour	APHA 2150 B	-	Agreeable	Agreeable	Agrecable	Agreeable
3	Taste	APHA 2160 C	344	Agreeable	Agreeable	Agreeable	Agreeable
4	Turbidity	APHA 2130 B	NTU	1	5	<1	<1
5	pH Value	APHA 4500H*B		6.5-8.5	No Relaxation	7.18	7.34
6	Total Hardness (as CaCO ₅)	APHA 2340 C	mg/l	200	600	66	76.2
7	Iron (as Fe)	APHA 3500Fe. B	mg/l	0.3	1.0	0.21	0.24
8	Chloride (as Cl.)	APHA 4500Cl B	mg/l	250	1000	60	66
9	Residual, free Chlorine	APHA 4500CL B	mg/l	0.2	1	ND	ND
Desira	ble Characteristics		1	0.2		140	IVID
10	Dissolved Solids	APHA 2540 C	mg/l	500	2000	210	228
11	Calcium (as Ca.)	APHA 3500Ca B	mg/l	75	200	26.2	30.8
12	Magnesium (as Mg)	APHA 3500Mg B	mg/l	30	100	13.8	19.6
13	Copper (as Cu)	APHA 3111 B.C	mg/l	0.05	1.5	<0.02	<0.02
14	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.3	0.018	0.021
15	Sulphatē (as SO ₄)	APHA 4500 SO ₄ 2- E	mg/l	200	400	6.4	7.2
16	Nitrate (as NO ₃)	APHA 4500 NO, E	mg/l	45	No Relaxation	2.8	3.4
17	Fluoride (as F)	APHA 4500F C	mg/l	1.0	1.5	0.011	0.019
18	Phenolic Compounds (as C ₆ H ₅ OH)	APHA 5530 B,D	mg/l	0.001	0.002	<0.05	<0.05
19	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	No Relaxation	< 0.004	< 0.004
20	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	No Relaxation	< 0.03	<0.03
21	Selenium (as Se)	APHA 3114 B	mg/I	0.01	No Relaxation	< 0.005	< 0.005
22	Arsenic (as As)	APHA 3114 B	mg/l	0.01	No Relaxation	<0.005	
23	Cyanide (as CN)	APHA 4500 CN C.D	mg/l	0.05	No Relaxation	ND	<0.005 ND
24	Lead (as Pb)	APHA 3111 B.C	mg/l	0.01	No Relaxation	<0.01	2,000
25	Zinc (as Zn)	APHA 3111 B,C	mg/l	5	15	<0.03	<0.01
26	Anionic Detergents (as MBAS)	APHA 5540 C	mg/l	0.2	1.0	<0.2	<0.03
27	Chromium (as Cr ¹⁶)	APHA 3500Cr B	mg/I	-		< 0.05	<0.05
28	Mineral Oil	APHA 5220 B	mg/l	0,5	No Relaxation	<0.03	<0.05
29	Alkalinity	APHA 2320 B	mg/l	200	600	112	138
30	Aluminium as(Al)	APHA 3500ALB	mg/l	0.03	0.2	<0.01	< 0.01
31	Boron (as B)	APHA 4500B, B	mg/l	0,5	2.4	<0.1	<0.1
32	Poly Aromatic Hydrocarbon as PAH	APHA 6440 B	mg/l	0.0001	No Relaxation	<0.0001	<0.0001
33	Pesticide	APHA 6630 B.C	ив/1		No Relaxation	Absent	A L


Note: CL: Colourless, AL: Agreeable, U/O: Unobjectionable, ND: Not Detected

Plot No.-M-22&23, Chandaka Industrial Estate, Patia, Bhubaneswar-751024, Dist-Khurda, Odisha Tel.: 7752017905 E-mail: visiontek@vespl.org, visiontekin@gmail.com, visiontekin@yahoo.co.in, Visit us at; www.vespl.org Committed For Better Environment

Annexure - VII Risk & Disaster Mitigation Plan submission covering Letter

Risk & Disaster Management Plan Submitted to OSCPCB, Bhubaneswar

Risk & Disaster Management Plan Submitted to MOEF, Regional Office, Bhubaneswar

Ref. No. FAPJ/ 4250

/2016

Dated: 01-02-2016

To
The Additional Principal Chief Conservator of Forests(C)
Ministry of Environment & Forests
Regional office (EZ)
A/3, Chandersekharpur,
Bhubaneswar - 751023

Sub: Submission of Risk & Disaster Management Plant along with the mitigation measures for expansion of Ferro Manganese Plant, Joda.

Sir.

It may kindly be aware that with reference to Environment Clearance issued for expansion of Ferro Manganese Plant, Joda, vide F. No. J-11011/03/2012-IA.II (I) dated 5th November, 2015, there is a specific condition mentioned in clause (xi) for submission of Risk & Disaster Management Plan along with the mitigation measures.

As such, we hereby enclose the Risk & Disaster Management Plan along with the mitigation measures for expansion of Ferro Manganese Plant from 0.0504 MTPA to 0.06 MTPA, Silico Manganese Plant of 0.06 MTPA and Manganese Sinter Plant of 0.05 MTPA. Thanking you,

Yours faithfully, For TATA STEEL Ltd.

HEAD

FERRO ALLOYS PLANT, JODA

Encl: as above.

TATA STEEL LIMITED

Ferro Alloys Plant, Jode-158034, Dist. Keonjhar, Odisha, India Tel., 08238100845, e-mail: headoffice.fap@stasleel.com Registered Office: Bombay House, 24, Homi Mody Street, Fort, Mumbal-400001, India Tal. 91 22 66658282, Fax 91 22 66657724 Corporate Identity Number, L27100MH1907PLC000260, Website: www.talasleel.com

Annexure VIII Noise Monitoring Report from 01-04-2019 to 31-10-2019

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: ENVlab /19/R-1131

Date: 3/7/19

NOISE MONITORING REPORT FOR JUNE-2019

Name of Industry : FAP, JODA (M/s TATA Steel Limited)

2. Date of Recording : 21.06.2019

Monitored by : VCSPL Representative in presence of TATA Representative

Sl.No	Sampling Location	Daytime dB (A) Leq	Night Time dB (A) Leq
1	Gate No-1	70.60	41.6
2	General Office	56.20	42.8
3	Office Varanda	55.20	38.8
4	Canteen	62.80	62.2
5	Mechanical Work Shop	70,60	68.8
6	Fabrication Area	78.80	71.2
7	RMPH Office	66.20	60.2
8	Packing Plot (2A)	62.20	58.8
9	Ceter Point	71.20	60.8
10	Weigh Bridge	68.20	61.2
11	Gate No-2	70.80	64.8
12	Ore Yard	72.20	70.2
13	well Area	62.20	58.8
14	Outside Furnace	74.20	60,2
15	Inside Furnace	88.60	81.8
16	Furnace Control Room	80.80	76.2
17	Infront Of DG Room	66,20	60,2
18	Infront of fire Hydrant Room	68.20	58.8
19	132 KV Electricity Substaion Room	72.60	69.2
20	Work Area	71.20	66.4
21	CMDC Area	78.80	71.2
22	Play Ground	80.60	78.2

Noise Monitoring Report from 01-04-2019 to 31-10-2019

Visiontek Consultancy Services Pvt. Ltd.

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: ENVIOR /19/R-4447

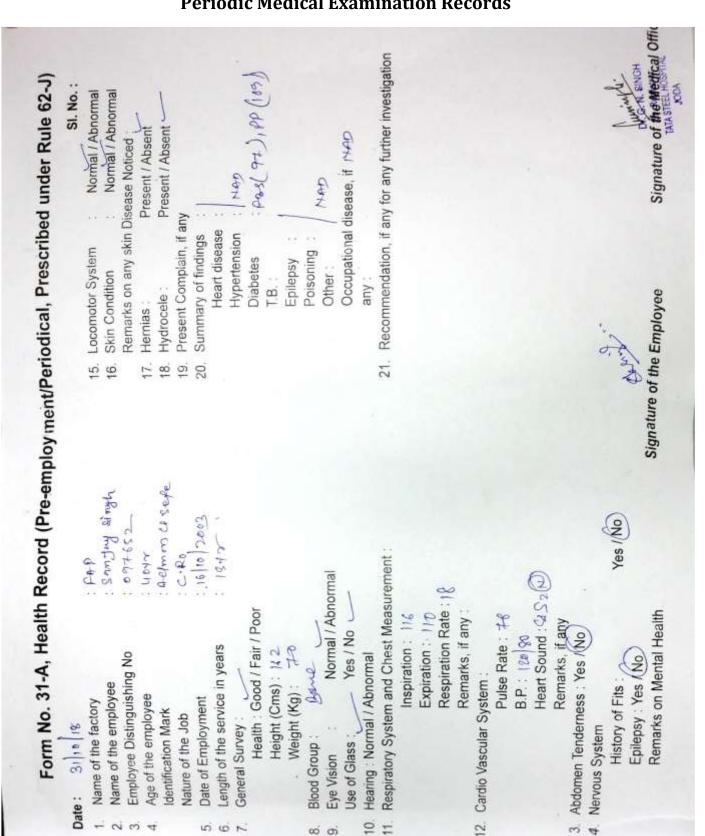
Date: 01.10.19

NOISE QUALITY ANALYSIS REPORT FOR THE MONTH OF SEPTEMBER-2019

1. Name of Industry : FAP, JODA (M/s TATA Steel Limited)

. Date of sampling : 17.09.2019

3. Sample collected by : VCSPL Representative in presence of TATA Representative


Sl.No	Sampling Location	Day	Night
1	Gate No-1	71.20	44.8
2	General Office	58.00	40.6
3	Office Varanda	56.00	36.6
4	Canteen	60.60	40.8
5	Mechanical Work Shop	71.20	41.2
6	Fabrication Area	76.60	46.6
7	RMPH Office	62.80	45.6
8	Packing Plot (2A)	60.60	44.8
9	Ceter Point	69.60	56.6
10	Weigh Bridge	66.80	. 58.2
11	Gate No-2	70,20	56.8
12	Ore Yard	71.20	56.6
13	well Area	60.80	56.8
14	Outside Furnace	72.20	59.1
15	Inside Furnace	78.80	50.6
16	Furnace Control Room	79.70	51.8
17	Infront Of DG Room	62.20	- 55.6
18	Infront of fire Hydrant Room	66,60	58.2
19	132 KV Electricity Substaion Room	70.20	52.8
20	Work Area	70.80	56.4
21	CMDC Area	74.80	51.2
22	Play Ground	76.20	48.2

Annexure IX

Periodic Medical Examination Records

Annexure X

Intimation Letter of EC to Zila Parishad

Ref: FAPJ/ 4/36 /2015 Date: 9th Nov. 2015

To President Zilla Parisad Keonjhar

Sub: Intimation of obtaining Environmental Clearance under EIA Notification-2006 for the expansion of Ferro Alloys Plant of TATA STEEL Ltd., Joda, Keonjhar District.

Dear Sir/ Madam,

We would like to inform you that Ministry of Environment Forests & Climate Change

(MOEF&CC), Govt. Of India has granted Environmental Clearance for the expansion of

capacity of our existing Ferro Manganese Plant from 0.0504 MTPA to 0.06 MTPA with 0.05

MTPA Sinter Plant & addition of 2*18 MVA SAF for 0.06 MTPA Slico Manganese production at

our Ferro Alloys Plant, Joda, Odisha vide letter No. F. No. J-11011/03/2012- IA II (I) dt

05.11.2015.

We therefore request your good-self to kindly acknowledge the receipt of above letter.

Yours Faithfully F: Tata Steel Limited

HEAD

FERRO ALLOYS PLANT, JODA

Enclosed:

1. Xerox copy of Environmental Clearance

TATA STEEL LIMITED

Ferro Alloys Plant, Joda-758034, Dist. Keonihar, Odisha, India Tel.: 0823610945, e-mail: headoffice.flapj@tutasteel.com Registered Office: Bornbay House, 24, Homi Mody Street, Fort, Mumbel-400001, India Tel. 81 22 68658282, Fas 91 22 68657724 Corporate Identity Number: L27100/841907PLC000260, Website: www.tatasteel.com

Intimation Letter of EC to Chairman, Joda Municipalty

Ref: FAPJ/ UI35 /2015 Date: 9th Nov, 2015

To Chairman Joda Municipality Joda.

Sub: Intimation of obtaining Environmental Clearance under EIA Notification-2006 for the expansion of Ferro Alloys Plant of TATA STEEL Ltd., Joda, Keonjhar District.

Dear Sir/ Madam,

We would like to inform you that Ministry of Environment Forests & Climate Change (MOEF&CC), Govt. Of India has granted Environmental Clearance for the expansion of capacity of our existing Ferro Manganese Plant from 0.0504 MTPA to 0.06 MTPA with 0.05 MTPA Sinter Plant & addition of 2*18 MVA SAF for 0.06 MTPA Slico Manganese production at our Ferro Alloys Plant, Joda, Odisha vide letter No. F. No. J-11011/03/2012- IA II (I) dt 05.11.2015.

We therefore request your good-self to kindly acknowledge the receipt of above letter.

Yours Faithfully F: Tata Steel Limited

HEAD FERRO ALLOYS PLANT, JODA

Enclosed:

1. Xerox copy of Environmental Clearance

TATA STEEL LIMITED

Ferro Alloys Ptant, Joda-758034, Dist. Keonjhar, Odisha, India Tel.: 09238100945, e-mail: headoffice, fapj@tstasteel.com Registered Office: Bornbay House, 24, Homi Mody Street, Fort, Mumbai-400001, India Tel. 91 22 66658282, Fax 91 22 66657724 Corporate Identity Number: L27100MH1907PLC000280, Website: www.tatasteel.com

Annexure XI

<u>Details of CSR funds allocated and released Expenditure against CSR</u> <u>Activities</u>

Period	Year wise expenditure Planning in (Rs Cr.)	Actual Expenditure for C.S.R in Rs Cr.	Name Of the CSR activities	Wheather Completed or Not
2011-12	26.00 Cr	26.07 Cr.	Health,Education,Livelihood,Rural Infastructure,Major Project:Keonjhar Bus stand	Completed
2012-13	21.00 Cr	21.17 Cr.	Health,Education,Livelihood,Rural Infastructure,Major Project:Construction of khandband Joribar Road	Completed
2013-14	15.00 Cr	15.21 Cr.	Health,Education,Livelihood,Rural Infastructure,Major Project:Road resurfacing inside Joda municipality	Completed
2014-15	24.00 Cr	24.98 Cr.	Health,Education,Livelihood,Rural Infastructure,Major Project:Municipalty Drinking water Project	Completed
2015-16	19.00 Cr	18.97 Cr	Health,Education,Livelihood,Rural Infastructure,Major Project:Kalyan Mandap at Joda	Completed
2016-17	18.86 Cr	13.20 Cr	Health,Education,Livelihood,Rural Infastructure,Major Project:Sona river bank protection near Women's college.	Completed
1017-18	14.00 Cr	14.27 Cr	Construction of PCC Pathway, boundary, toilet and painting ,Procuring 2 Mobile Medical Units and ambulances, Waiver for free treatment at Tata Steel Hospital, Joda, Installation of piped drinking water supply system in Gurutuan, Kamalpur, Bandhuabeda, Deoghar & Kusumdih, School Improvement Project (1000 Schools and Hans Foundation), 30 Model school project at Keonjhar, Women Empowerment Programmes	

Head

Ferro alloys Plant, Joda

Annexure XII Environmental Parameter Display board at Main Gate

Annexure XIII

Covering Letter of Form V. Environment statement submission

Annexure XIV

Details of Publication on the Newspapers

Published on The Statesman of 12th November 2015 Issue

Six Monthly Compliance Report to EC - Ferro Alloys Plant, Joda, M/s Tata Steel Limited for Apr'19 to Oct'19

Published on Sambad of 13th November 2015 Issue
