

Regd Post with A/D

Ref.No.: MGM/P&E/862/19 Date: 29/11/2019

To,

The Additional Director,
Ministry of Environment and Forest & Climate Change
Eastern Region Office,
A/3, Chandrasekharpur,
Bhubaneswar-751023

Sub: Submission of Six-monthly EC compliance report on implementation of safeguards in respect of Bamebari Iron and Manganese Mine, M/s TATA Steel Ltd. for the period April 2019 to September 2019.

Dear Sir,

We are submitting herewith six-monthly EC compliance report on implementation of safeguards in respect of Bamebari Iron and Manganese Mine, M/s TATA Steel Ltd. for the period April 2019 to September 2019 as per EIA notification 2006. The same is also attached in Soft copy to your good office on e-mail to roez.bsr-mef@nic.in for your ready reference.

We trust that the measures taken towards environmental safeguards comply with the stipulated conditions. We look forward to your guidance which shall certainly help us in our endeavor for improving upon our environmental management practices.

This is for your kind perusal.

Thanking you, Yours faithfully, F: TATA STEEL LTD.

Agent, Bamebari Iron and Manganese Mine &

Head, Manganese Gr. of Mines Ferro Alloys & Minerals Division,

Joda.

Encl: as above.

Copy to:

- 1. Zonal Office Kolkata, Central Pollution Control Board, Southernd Conclave, Block 502, 5th and 6th Floors, 1582 Rajdanga Main Road, Kolkata, West Bengal 700107.
- 2. The Member Secretary, State Pollution Control Board, A/118, Nilakantha Nagar, Bhubaneswar, Odisha-751012.
- 3. The Regional Officer, State Pollution Control Board, Baniapat, DD College Road, Keonjhar, Odisha-758001

M/s Tata Steel Limited

Compliance report of Environmental Clearance for Bamebari Iron and Manganese Mine (For the period from- April 2019 to September 2019)

Reference letter from MoEF&CC, New Delhi- J-11015/85/2003-IA. II(M) DATED 17.11.2005

Sl. no	A: Specific conditions	Compliance status
1	Mining shall not be undertaken in	We have obtained Forest Clearance vide MoEF's
	areas of forestland within the lease	letter No 8-72/2004-FC dt 25.01.2007 over an
	without the necessary approvals /	area of 145.329 ha of forest land for Bamebari Iron
	forestry clearance.	& Mn. Mines.
		Further, as per MoEF & CC Circular dated F.No.8-
		78/1996-FC, dated.10.03.2015, an area of 66.126
		ha. of non-forest land was recorded as forest in
		Govt. records as on 25.10.1980. As such forest
		diversion proposal over an area of 303.066 ha
		(Sabik forest & Balance forest) has been applied on
		19.06.2016, the same is under process.
		The mining operation and allied activities are
		confined within the approved diverted area only.
2	Topsoil should be stacked properly	No top soil generated during the period April'19 to
	with proper slope at earmarked	September' 19.
	site(s) with adequate measures and	
	should be used for reclamation and	
3	rehabilitation of mined out area. OB and other wastes should be	OB and other wastes are being dumped as per
3	stacked at earmarked sites only and	approved Scheme of Mining.
	should not be kept active for long	approved selicine or Minnig.
	periods of time.	The dump is terraced at every 10m and overall
		slope is maintained well within 28° as per
	Plantation should be taken up for soil	approved Scheme of Mining. The inactive portion
	stabilization along the slopes of the	of OB dumps area being stabilized by plantation of
	dump and terraced after every 5-6 m	native species.
	of height and overall slope angle shall	
	be maintained not exceeding 28°.	During April'19 to September'19, we have planted
	Sedimentation pits shall be constructed at the corners of the	about 7150 Nos. of native species.
	garland drains. Retention/toe walls	Local forest species like Gambhari, Chakunda,
	shall be provided at the base of the	Mahanimba, Sisu, Summerglow, Karanj etc were
	dumps.	used for carrying out plantation in passive dumps.
		The retaining wall and garland drain with
		sedimentation pit has been provided in all dumps.
		Their dimensions are matching the requirements
		to arrest the run off effectively.

4	Minerals rejects shall be stacked	The mineral rejects generated during manual
	separately at earmarked site/dump only.	processing of manganese ore (i.e. sorting, dressing and sizing) has been stacked separately at earmarked site.
5	Catch drains and siltation ponds of appropriate size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The drains should be regularly desilted and maintained properly. Garland drains (size, gradient & length) and sump capacity should be designed keeping 50% safety margin over and above the peak sudden rainfall and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material. Storm water return system should be provided. Storm water should not be allowed to go to the effluent treatment plant during high rainfall/super cyclone period. A separate storm water sump for this purpose should be created.	Existing catch drains and garland drains are covering the entire dump slope at low lying part. Size, gradient and length of the drains are adequate to take care of the peak flow. A series of check dams and settling pits have been provided for proper settlement of suspended solid in surface runoff. The garland drain, catch drains and sedimentation pits are periodically de-silted and maintained properly.
6	Dimension of retaining wall at the toe of OB dumps and benches within the mine to check run-off and siltation should be based on the rainfall data.	Retaining wall and garland drain with the dimension as specified below, are provided to prevent the siltation and check the run-off. Dimension of the Retaining Wall: Height – 1 to 1.2 mtr. Width – 1 mtr. Dimension of the Garland Drain: Depth – 1.20 to 1.5 mtr. Width – 1 to 1.2 mtr.
7	Trace Metals such as Ni, Co, As and Hg should be analyzed in dust fall and soil samples for at least one year during summer, monsoon and winter seasons. If concentrations of these metals are found below the standards then with prior approval of MOEF this specific monitoring could be discontinued.	Samples have been analyzed in dust fall & soil for trace metal and the detail analysis result is enclosed as Annexure-I
8	Mineral and OB transportation shall be in trucks/dumpers covered with tarpaulins.	The trucks are being covered with tarpaulin during dispatch of manganese ore from mine to Ferro Alloys Plant and Railway Siding at Joda. OB is being transported by shovel – dumper combination from mine face to dump yard. All the trucks meant for transportation of mineral from mine to our captive plant & Railway Siding at

		Joda is bearing the "Pollution under Control" certificate. The emissions are under control.
	Vehicular emissions should be kept under control and regularly monitored.	Haul road and other areas having potential for producing air borne dust are sprinkled regularly with help of mobile sprinklers. Beside this fixed sprinkler has also been provided in main haul road in Joribar block of Bamebari Iron and Manganese Mine.
	Suitable measures should be taken to check fugitive emissions from haulage roads & transfer points, etc.	The processed manganese ore is being transferred manually; hence there is less fugitive emission during transfer of ore.
		The report of Fugitive Dust emission during the period April'19 to September'19 are enclosed as Annexure-II .
9	A green belt of adequate width should be raised by planting the native species around ML area. Plantation should also be carried out along roads, OB dump sites etc. in	• Reclamation and plantation programs have been drawn. We have planted around 4.42 lakh nos. of sapling over an area of around 70.37 ha till 2018-19.
	consultation with the local DFO <i>I</i> Agriculture Department. The density of the trees should be not less than 2500 plants	• We have planted about 7150 numbers of saplings and 16000 vetiver slips in the year 2019-20 upto September 2019.
	per ha.	The plantation includes the local species forest species like Gambhari, Chakunda, Mahanimba, Sisu, Summerglow, Karanj etc etc.
		• Tree density is maintained more than 2500 plants per ha.
10	Groundwater shall not be used for mine operations. Prior approval of CGWA shall be obtained for using groundwater.	Ground water use permission has been obtained from CGWA NOC No. CGWA/NOC/MIN/ORIG/2018/3899, Dated.09.08.2018 @ 130cum/day and not exceeding 47450 cum in a year.
11	Mining will not intersect groundwater. Prior permission of the MOEF and CGWA shall be taken to mine below water table.	Mining is not intersecting the ground water as the Ground water being at lower level in comparison to existing maximum quarry depth.
12	Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells and constructing new piezometers. The monitoring should be done for quantity four times a year	Ground water table is much below the existing mine workings because of mining operations are confined at hilly topography only. However, ground water level & quality at existing well at nearby villages are being monitored.
	in pre-monsoon (April / May), monsoon (August). Post-monsoon	The ground water quality monitoring results and level recorded during the Pre-monsoon and

	(November) and winter (January) seasons and for quality in May. Data thus collected should be submitted to the MoEF & CGWA quarterly.	monsoon seasons are enclosed as Annexure III & IV respectively
13	Trace metals such as Fe, Cr+6, Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water downstream and in ground water at lower elevations from mine area, shall be periodically monitored in consultation with the OSPCB and State Ground Water Board. Suitable	Trace metals such as Fe, Cr ⁶⁺ , Cu, Se, As, Cd, Hg, Pb, Zn and Mn at specific locations for both surface water (downstream & upstream) and ground water at lower elevation is being periodically monitored by referring to the standards as per BIS: 10500. The details of analysis result for ground water and
	treatment measures shall be undertaken in case levels are found to be higher than permissible limits.	surface water with standards are enclosed as Annexure - V & VI respectively.
14	"Consent to Operate" should be obtained from SPCB before expanding mining activities.	"Consent to operate" order no.117 vide letter no. 8917/ IND-I-CON-189 dated 29.08.2019 & valid up to 31.03.2021.
15	A Conservation Plan for conservation of endangered fauna including the Indian Elephant found in and around the mine area shall be prepared and implemented in consultation with identified agencies/institutions and with the State Forest Department. The Plan should be dovetailed with that prepared / under implementation / proposed for the endangered fauna found in the Reserve Forest in the buffer zone of the project site. The costs for the specific activities/taslcs should be earmarked in the Conservation Plan and shall not be diverted for any other purpose. Year.wise status of the implementation of the Plan and the expenditure thereon should be reported to the Ministry of Environment & forests, RO, Bhubaneshwar.	We have deposited Rs. 45,05,554/- on 14.12.2005 vide SBI DD no. 062995 being the contribution towards implementation of Wild Life Management Plan prepared for Bonai & Keonjhar division. Further, as per subsequent demand raised by the forest department, additional amount of Rs. 47,74,446 on dated 27.03.2013 vide SBI DD No657487 and Rs. 10672000.00 through RTGS bearing UTR No. HDFCR52015022403309396 on dated 24.02.2015 towards differential payment for implementation of Regional Wildlife Management Plan prepared for Bonai & Keonjhar division and the same has been intimated to the DFO, Keonjhar. Site Specific wildlife management plan has been approved by PCCF, Bhubaneswar, Odisha and Chief Wildlife Warden Odisha vide memo no. 7743 / 1 WL-SSP -01/2015 Bhubaneswar, the dated 01.09.2015. Further, we have deposited an amount of Rs. 4,69,81,000/- dated 15.02.2018 towards SSWLCP in respect of Bamebari Iron & Mn. Mines through
16	A Final Mine Closure Plan along with	NEFT mode towards SSWLCP in Odisha CAMPA vide Ref. No. SBINR52018021500055096. Progressive Mine Closure Plan for the period
	details of Corpus Fund should be submitted to the Ministry of Environment & Forests 5 years in advance of final mine closure for approval.	2018-19 to 2019-20 has been approved by IBM. The final mine closure plan along with details of Corpus fund will be submitted to the Ministry of Environment & Forests in advance of final mine closure for approval.

Sl.No	B: General Conditions	Compliance Status				
1	No change in mining technology and scope of working should be made without prior approval of the Ministry of Environment & Forests.	working has be proposed in prior approvation Environment	No change in mining technology and scope of working has been made at the mine. If any changes proposed in technology and scope of workings prior approval shall be sought from Ministry of Environment & Forests.			
2	No change in the calendar plan including excavation, quantum of manganese ore and waste should be made.	excavation of being strictly	f waste has l	Manganese Onceen prepared (2019-20)		
3	Four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RPM. SPM, SO2, NOx. monitoring. Location of the stations should be decided based on the meteorological data, topographical features, and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board. Data on ambient air quality (RPM, SPM, SO2 & NOx.) should be regularly submitted to the Ministry including its Regional office at Bhubaneshwar and the State Pollution Control Board <i>I</i> Central Pollution Control Board once in six. Months.	Six ambient a been establish (Near Manageresidential, nearea) and 3 meandhuabeda. Samples are contained and once in a the 24hour means and some and the 24hour means are a submittering parallimits. Ambient air submitted to monthly basis report of ambient air submitted to monthly a	hed out of who ger's Office ear weigh brooms in buffer and Raikera. drawn twice in quarter in but onitoring aver Mn. served that arameters are quality monit State Pollutions. Abstract of the abient air quarters.	nitoring station ich 3 nos. in conclose proximating and near zone at Jagann a week in confer zone to assage for PM ₁₀ , PM the environ within the presentation Control Both the monthly more ality for period is enclosed.	re zone lity to mining athpur, re zone certain $M_{2.5}$, So_2 amental scribed so being ard on hitoring d from	
4	Drills should be wet operated or with dust extractors and controlled blasting should be practiced.	Wet drilling co	oncept is alrea asting technic de this green b	ndy in place. que with NONE elt has been dev		
5	Fugitive dust emissions from all the sources should be controlled regularly monitored and data recorded properly. Water spraying arrangements on haul roads, wagon loading, dumpers/ trucks, loading &	is being done The Fugitive	on haul roads dust emissi eriod April'1	oy mobile water ons monitoring 9 to Septembe	g done	

	unloading points should be provided	
6	and properly maintained. Adequate measures should be taken	Ear plugs & Ear muffs are provided to the workers
	for control of noise levels below 85 dBA in the work environment. Workers engaged in blasting and drilling operations, operations of	working in drilling operations & DG operations. Rests of operations are below the noise levels of 85 dBA.
	HEMM, etc should be provided with ear plugs/ muffs.	The details of noise monitoring for the period April'19 to September'19 are enclosed as Annexure-VIII.
7	Industrial waste water (workshop and waste water from the mine) should be properly collected, treated so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31 st December 1993 or as amended from time to time. Oil and grease trap should be installed before discharge of workshop effluents.	The oil separation system has been provided at workshop and working effectively. This is being centrally used for maintenance of all the Equipment's running at Bamebari & Tiringpahar Mn. Mine. The details of wastewater analysis report for the period April'19 to September'19 are enclosed as Annexure-IX .
8	Environmental laboratory should be established with adequate number and type of pollution monitoring and analysis equipment in consultation with the State Pollution Control Board.	It is being done by M/s Visiontek Consultancy Service Pvt. Ltd. (Recognized as "A" category consultant as by State Pollution Control Board, Orissa). The type of pollution monitoring and analysis equipment used by M/s Visiontek Consultancy Service Pvt. Ltd.is enclosed as Annexure – X.
9	Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.	Suitable dust masks are being provided to employees (departmental & contractual) engaged in dusty operations. It is also ensured that they use the same. Employees are undergoing Periodical Medical Examination which is inclusive of lungs function test and audiometry. All the personnel are trained on safety in work place and continuous awareness program are being conducted for all employees to avert manganese poisoning. Periodical Medical Examination of employees (departmental & contractual) are conducted as per prescribed norms of Mines Rule, 1955. The initial and periodical examination includes blood hematology, blood pressure, detailed cardiovascular assessment, neurological
	Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.	examination etc. All chest radiographs are being classified for detection of pneumoconiosis, diagnosis and documentation made in accordance to ILO Classifications. Total 51 contractual employees and 03
		departmental employees have undergone PME during April'19 to September'19.

10	A separate environmental	manganese occupation	There are no findings of pneumoconiosis and manganese poisoning which is classified as occupational disease. The department is in place and the Head of the			
10	management cell with suitable qualified personnel should be set up under the control of a Senior	department is reporting to General Manager of the division.				
	Executive, who will report directly to the Head of the Organization.	as Annexu i				
11	The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry	are spent o and not div	cated for environmen only for environment i erted to any other pur d Expenditure for FY	related purposes pose. The details		
	and its Regional Office located at Bhubaneshwar.	S.No.	Activity	Expenditure proposed for FY 2019-20		
		1	Afforestation on Dump slopes	182500		
		2	Construction of retaining wall	93600		
		3	Construction of Garland drain, settling pits with	31200		
		4	check dam Environmental monitoring	1500000		
			Total	1807300		
		The cost	incurring towards	environmental		
		monitoring	and different	environmental		
		•	measures during the en in the next half year	•		
12	The Regional Office of this Ministry	•	ending full co-operation	on to the officers		
	located at Bhubaneshwar shall		onal Office by furnish			
	monitor compliance of the stipulated		mation / monitoring r			
	conditions. The project authorities					
	should extend full cooperation to the					
	officer (s) of the Regional Office by furnishing the requisite data <i>I</i>					
	information <i>I</i> monitoring reports					
13	A copy of clearance letter will be	Copy of the	e clearance letter mar	ked to Sarpanch,		
	marked to the concerned Panchayat/local NGO, if any, from	Gram Panch	hayat, Palasa on 12.01.	2006.		
	whom suggestion/ representation has been received while processing					
14	the proposal. The State Pollution Control Board	This is annl	icable to State Pollutio	on Control Roard		
1.4	should display a copy of the clearance	Orissa.	icable to state Fullutio	ni Gond of Doard,		
	are are present a copy of the electronice	51150ai				

	1	
	letter at the Regional Office, District	
	Industry Centre and Collector's	
	Office/Tehsildar's Office for 30 days.	
15	The project authorities should	A detail of Environmental Clearance with regard to
	advertise at least in two local	Bamebari Manganese Mine was published in Oriya
1	newspapers widely circulated around	News Papers Anupam Bharat & Aam Khabar dated
	the project, one of which shall be in	10.01.2006.
	the vernacular of the locality	
1	concerned within seven days of the	
1	issue of the clearance letter informing	
	that the project has been accorded	
1	environmental clearance and a copy	
	of the clearance letter is available	
	with the State Pollution Control	
	Board and may also be seen at Web	
	Site of the Ministry of Environment &	
	Forests at http://envfor.nic.in . and a	
	copy of the same should be forwarded	
	to the Regional Office of this Ministry	
	located at Bhubaneswar.	
16	The Ministry or any other competent	Noted
	authority may stipulate any further	
	condition for environmental	
	protection.	
17	Failure to comply with any of the	Noted
	conditions mentioned above may	
	result in withdrawal of this clearance.	
18	The above conditions will be	Noted
	enforced, inter alia, under the	
	provisions of the Water (Prevention	
	& Control of Pollution) Act, 1974, the	
	Air (Prevention & Control of	
	Pollution) Act, 1991 along with their	
	amendments and rules.	
	amenamento ana ruics.	

$Additional\ Conditions\ as\ per\ MoEFCC\ Letter\ No.\ 106-9/11/EPE\ dt.\ 02.12.2014\ issued\ to\ all\ Non-Coal\ Mining\ Projects.$

S.No.	Stipulated Condition	Compliance Status
1.	The project authority shall adopt best mining practices for given conditions in the mining area, adequate number of check dam, retaining wall/structure, garland drains and settling ponds should be provided to arrest the wash off with rain water in catchment area.	The best scientific method of mining is in practice at Bamebari Iron and Manganese Mine like all OB generated were back filled in old pits. Garland grain and Retaining wall are provided at the toe of the overburden dumps. Settling ponds are done at intervals along the garland drain.
2.	The natural water bodies and or stream which are flowing in and around the village should not be disturbed. The water table should be nurtured so as not go down below the pre-mining period. In case of any water scarcity in the area, the project authorities have to provide water to the villagers for their use. A provision for regular monitoring of water table in open dug well.	Agreed. No water bodies disturbed due to mining activities. The ground water table is being monitored regularly from the open well and tube well of nearby villages. Drinking water is provided to the villagers.
3.	The illumination and sound at night at project sites disturb the village in respect of both human and animal population. Consequent sleeping disorder and stress may affect the health in the village located close to mining operation. Habitations have a right to darkness and minimal noise level at night. The Project Proponents must ensure that the biological clock of the village is not disturbed by orienting the floodlights mask way from the village and keeping the noise levels well within prescribed limits for day/ night hours.	The operation of the mine is restricted to the day hours only. Hence, there is no disturbance to the habitats located close to the mining operation. The biological clock of the village is not disturbed.
4.	The project Authority shall make necessary alternative arrangement, where required, in consultation with state Government to provide alternative areas for livestock grazing. In this case context, the Project Authority should implement the direction of Hon'ble Supreme Court with regard to acquiring grazing land. The sparse tress on such grazing ground, which provides mid-day shelter from the scorching sun, should be scrupulously guarded felling lest	Not Applicable. There is no grazing land within the M.L. area.

	the cattle abandon the grazing ground or return home by noon.	
5.	Where ever blasting is undertaken as part of mining activity, the Project Authority shall carry out vibration studies well before approaching any such habitats or other building to evaluate the zone of influence and impact of blasting on neighbourhood. Within 500 meters of such sites vulnerable to blasting vibration, avoidance of use of explosives and adoption of alternative means of mineral extraction such as ripper/dozer combination/ rock breakers/ surface mineral etc should be seriously considered and practiced wherever practicable. A provision for monitoring of each blast should be made so that impact of blasting on nearby habitation and dwelling unit could be ascertained. The covenant of lease deed under rule 31 of MCR 1960 provided that no mining operation shall be carried out within 50 meters of public works such as public roads and building or inhabited sites except with prior permission from the competent Authority.	Deep hole drilling and controlled blasting technique has been adopted in the mine. Vibration study has been done with the help of CIMFR and vibration limit (ppv) found within the limit. Provision for monitoring each blast has been established to ascertain the blast induced vibration (ppv) limit at different distances from the centre of blasting. Rock breakers were used to avoid secondary blasting.
6.	Main haulage road in the mines should be provided with permanent water sprinkler and other road should be regularly wetted water tanker fitted with sprinkler. Crusher and material transfer points should be invariably be provided with bag filter and or dry fogging system. Belt conveyor fully covered to avoid air borne dust.	overburden dumping areas are regularly sprinkled
7.	The project Authority shall ensure that productivity of agriculture crops is not affected due to the mining operation. Crop Liability Insurance Policy has to be taken by PP as a precaution to compensate for the crop loss. The impact zone shall be 5 Km from the boundary of mine lease area for insurance policy. In case, several mines are located in cluster mines, formed inter – alia, to sub serve such and objective shall be responsibility for securing such Crop Liability Policy.	Not Applicable. There is no crop land nearby the M.L. area.

8.	In case any village is located within the	Not Applicable
	mining leasehold which is not likely to	
	be affected due to mining activities	
	during the life of mine, the Expert	
	Appraisal Committee (EAC) should	
	consider the proposal of	
	Environmental Clearance (EC) for	
	reduced mining area. The mining lease	
	may be executed for the area for which	
	EC is accorded. The mining plan also	
	accordingly revised and required	
	stipulation under the MMDR Act 1957	
	and MCR 1969 met.	
9.	Transportation of minerals by road	There is no transportation road passing through
).	passing through the village shall not	any village.
	be allowed. A "bypass" road should be	any vinage.
	• 1	
	constructed (say leaving a gap of at least 200 m) for the purpose of	
	transportation of minerals so that the	
	impact of sound, dust and accidents	
	could be mitigated. The PP shall bear	
	the cost towards the widening and	
	strengthening of existing public road	
	network in case same is proposed to	
	be used for the project. No road	
	movement should be allowed on	
	existing village road network without	
	appropriately increasing carrying	
10.	capacity of such road	Not Applicable
10.	Likewise, alteration or re-routing of	Not Applicable
	foot paths, pagdandies, cart road and	
	village infrastructure/ public utilities	
	or roads (for purpose of land	
	acquisition for mining) shall be	
	avoided to extent possible and in such	
	case acquisition is inevitable,	
	alternative arrangements shall be	
	made first and the only the area can be	
	acquired. In these types of cases	
	Inspection reports by site visit by	
	expert may be insisted upon which	
	should be done through reputed	
11	Institutes.	Tota Chaol has talves are many as it is it is a
11.	The CSR activates by companies	Tata Steel has taken up many social initiatives for
	including mining establishment has	the upliftment of the education, health and other
	become mandatory up to 2% their	socio-economic development of the neighbouring
	financial turn over, socio Economic	villages. TSRDS (Tata Steel Rural Development
	Development of neighbourhood.	Society) has been pioneering the initiatives
	Habitats could also be planned and	through CSR activities.
	executed by the PPs more systemically	DOD makes has not been suited to the DD out
	based on need based door to door	R&R policy has not been applicable for the PP till
	survey by established Social Institute/	now.

Workers on the lines as required under TOR. "R&R Plan// compensation details for **Project** Affected People (PAP) should be furnished. While preparing the R&R plan, the relevant State/ national Rehabilitation & Resettlement Policy should be kept in view. In respect of SCs and STs and weaker section of society in study, a need bashed sample survey, family-wise, should undertaken to assess their requirement, and action programmes prepared and submitted accordingly, integrating the sectoral programmes of line department of State Government. It may be clearly brought out whether the village including their R&R and socio-economics aspect should be discussed in EIA report.

> Yours faithfully F: TATA STEEL LTD

Agent, Bamebari Iron and Mn.Mine & Head (Manganese Group of Mines), Joda

(An Enviro Engineering Consulting Cell)

Ennlab/19/R-4852

05.10.19

S-1:Near Bamebari Quarry

Analysis Results	SEPT-19 0.0038 0.046	<0.000002	<0.000002			
Analys		JUNE-19	0.0031	0.052	<0.000002	<0.000002
Unit			%	%	%	%
Parameters		Cobalt as Co	Nickel as Ni	, Mercury as Hg	Arsenic as As	
No.		1	2		4	

	DUST FALL MONITORING- JUNE & SEPT 2019	NITORING	- JUNE & SE	PT 2019	
Section 2	Total Dust Fall		Analy	Analysis Result	
Date of Sampling	(t/km2/month)	Co (%)	Ni(%)	Hg(%)	As (%)
01.06.2019 to	0.54	70 001	70.001	70 001	1000
30.06.2019	0.34	-0.001	<0.001	~0.001	70.001
01.09.2019 TO	0.40	-0000	70 001	70 001	10000
30.09.2019	0.40	-0.001	-0.001	~0.001	-0.001

SOIL ANALYSIS REPORT

Sampling Location

S

(An Enviro Engineering Consulting Cell)

Date: 05.10.19

Ref.: Enulab/19/R-4650

		_			_	_			_	
Sept -19	15.09.2019	412.6	Sept -19		15.09.2019	438.2	Cont 10	CT-1dac	15.09.2019	388.6
Aug-19	28.08.2019	632.2	Aug-19	0	28.08.2019	482.6	Δ110-10	/T Smir	28.08.2019	411.2
Monitoring	Date			Monitoring	Date			Monitoring	Date	
NAAQ . Standard	1200	1200µg/m ²	NAAQ	Standard	12003	1200µg/ III°	NAAQ	Standard	1200.2 /223	1400µg/III°
Sampling Location Near Sorting Yard (Joribar Block)	Method of Measurement	Gravimetric Method	Sampling Location Near Stack Yard	(Joribar Block)	Method of Measurement	Gravimetric Method	Sampling Location	(Joribar Block)	Method of Measurement	Gravimetric Method
L-1	Parameters	· SPM	L-2		Parameters	SPM	12		Parameters	SPM

(An Enviro Engineering Consulting Cell)

ISO 94001 : 2008 ISO 94001 : 2004 OHSAS 18001 : 2007

Ref.: Envlab 19 | R-4846

Date: 05.16.19

				-	_																					
Analysis Result	Aug-19		CL	Agreeable	Agreeable	1.8	7.51	136.0	0.31	44.0	ND		210.0	40.8	12.6	<0.05	0.021	5.6	3.8	0.026	<0.001	<0.001	<0.001	<0.01	<0.01	ND
Analysi	June -19		CL	Agreeable	Agreeable	1.6	7.44	112.0	0.28	40.8	ND		188.0	41.2	19.2	<0.05	0.018	5.2	3.2	0.021	<0.001	<0.001	<0.001	<0.01	<0.01	ND
Standards as per IS: 10500, 2012	•		52	Agreeable	Agreeable	1	6.5-8.5	300	0.3	250	0.2		200	75	30	0.05	0.1	200	45	1	0.001	0.001	0.003	0.01	0.01	0.05
Unit			Hazen	:	-	NTU	1	mg/l	mg/l	mg/l	mg/l		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	l/gm	mg/l	l/gm	l/gm	mg/l	mg/l	mg/l
Parameter		Essential Characteristics	Colour	Odour	Taste	Turbidity	pH Value	Total Hardness (as CaCO ₃)	Iron (as Fe)	Chloride (as CI)	Residual, free Chlorine	Desirable Characteristics	Dissolved Solids	Calcium (as Ca)	Magnesium (as Mg)	Copper (as Cu)	Manganese (as Mn)	Sulphate (as SO ₄)	Nitrate (as NO ₃)	Fluoride (as F)	Phenolic Compounds (as C ₆ H ₅ OH)	Mercury (as Hg)	Cadmium (as Cd)	Selenium (as Se)	Arsenic (as As)	Cyanide (as CN)
SI. No		Essential C	-	2	3	4	5	9	7	8	6	Desirable Ch	10	11	12	13	14	15	16	17	81	19	20	21	. 22	23

Sampling Location: GW1: Palsa Village OW GROUND WATER

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.:

Date:

	7		-	-		_		_	_			
8	7.0	3.2	<0.2	50.07	0.03	0.01	84.0	<0.01	10:07	6000	70,000	Absent
<0 PM	26	0.1	<0.2	<0.05	<0.03	72.0	72.0	<0.01	<0.5	<0.0001		Absent
0.01	10		7.0		0.01	200		0.03	0.5	<0.0001		Absent
ME	mg/1	1/2000	- A	mg/l	mg/l	mg/l) ;	l/gm	mg/l	l/gµ		l/gm
Lead (as Pb)	Zinc (as Zn)	Anionic Detergents (as	MBAS)	Chromium (as Cr ⁺⁶)	Mineral Oil	Alkalinity	A luminimism	Auminium as(AI)	Boron (as B)	Poly Aromatic Hydrocarbon as PAH	, , , , , , , , , , , , , , , , , , ,	resucide
74	25	26		27	28	29	30	OC	31	32	33	33

(An Enviro Engineering Consulting Cell)

ISO \$1001 : 2004 OHSAS 18001 : 2007

Ref.: Enwalo 19 | R-4847

Date: 05.10.19

Parameter Unit per IS: 10500, pont June-19 Colour - 2012	7			Standards as	Analysi	Analysis Result
Colour Flazen 5 CL Odour — U/O Agreeable Taste — Agreeable 1.2 Turbidity NTU 5 1.2 pH Value — 6.5-8.5 7.38 pH Value — 6.5-8.5 7.38 pH Value — 6.5-8.5 7.38 Iron (as Fe) mg/l 300 124.0 Iron (as Fe) mg/l 2.50 7.3 Chloride (as Cl) mg/l 2.50 7.1.2 Dissolved Solids mg/l 7.5 51.6 7.6 Calcium (as Ca) mg/l 7.5 51.6 7.6 Magnesium (as Mg) mg/l 7.5 51.6 7.6 Magnesium (as Ca) mg/l 7.5 51.6 7.6 Magnesium (as Ca) mg/l 4.5 2.6 7.6 Nulpate (as NO ₂) mg/l 4.5 2.6 7.6 Magnesium (as Ca) mg/l 4.5	No.	Parameter	Unit	per IS: 10500, 2012	June-19	Aug-18
Odour U/O Agreeable Taste Agreeable Agreeable Turbidity 5 1.2 1.2 pH Value 6.5-8.5 7.38 1.2 pH Value 6.5-8.5 7.38 1.2 pH Value 6.5-8.5 7.38 1.2 Iron (as Fe) mg/l 0.3 0.29 1.24.0 Iron (as Fe) mg/l 0.2 ND 1.24.0 Chloride (as C1) mg/l 0.2 ND 216.0 1.2 Desidual, free Chlorine mg/l 30 24.6 1.0 1.0 2.16.0 1.0	1	. Colour	Hazen	5		CL
Taste — Agreeable Agreeable Turbidity NTU 5 1.2 pH Value — 6.5-8.5 7.38 Total Hardness (as CaCO ₃) mg/l 300 124.0 Iron (as Fe) mg/l 250 51.2 Chloride (as Cl) mg/l 250 51.2 Residual, free Chlorine mg/l 500 216.0 Dasolved Solids mg/l 75 51.6 Dissolved Solids mg/l 50.05 216.0 Magnesium (as Ca J) mg/l 0.05 24.6 Magnesium (as Ca) mg/l 0.05 51.6 Sulphate (as SO ₂) mg/l 0.01 <0.034	2	Odour	1	O/O	Agreeable	Agreeable
Turbidity NTU 5 1.2 pH Value 6.5-8.5 7.38 Total Hardness (as CaCO₂) mg/l 300 124.0 Iron (as Fe) mg/l 0.3 0.29 Chloride (as C1) mg/l 250 51.2 Residual, free Chlorine mg/l 500 216.0 Dissolved Solids mg/l 75 51.6 Dissolved Solids mg/l 75 51.6 Magnesium (as Ca) mg/l 75 51.6 Magnesium (as Ca) mg/l 0.05 6.1 Sulphate (as SO₂) mg/l 0.05 6.1 Nitrate (as NO₂) mg/l 45 2.6 Phenolic Compounds (as C₀H,OH) mg/l 0.001 <0.001	3	Taste	-	Agreeable	Agreeable	Agreeable
pH Value 6.5-8.5 7.38 Total Hardness (as CaCO,) mg/l 300 124.0 Iron (as Fe) mg/l 0.3 0.29 Chloride (as Cl) mg/l 5.0 51.2 Residual, free Chlorine mg/l 500 216.0 Destrable Characteristics mg/l 500 216.0 Dissolved Solids mg/l 75 51.6 Calcium (as Ca) mg/l 75 51.6 Magnesium (as Mg) mg/l 0.05 4.6 Copper (as Cu) mg/l 0.05 4.0 Nitrate (as NO ₃) mg/l 0.01 0.034 Phenolic Compounds (as C ₆ H ₂ OH) mg/l 0.001 <0.001	4	Turbidity	UTU	5	1.2	1.6
Total Hardness (as CaCO ₃) mg/l 300 124.0 Iron (as Fe) mg/l 0.3 0.29 n Culoride (as C1) mg/l 550 51.2 n Desidual, free Chlorine mg/l 500 216.0 n Dissolved Solids mg/l 75 51.6 n Dissolved Solids mg/l 75 51.6 n Calcium (as Ca) mg/l 75 51.6 n Magnesium (as Mg) mg/l 0.05 24.6 n Manganese (as Mn) mg/l 0.01 0.021 n Nitrate (as SO ₁) mg/l 45 2.6 n Sulphate (as SO ₂) mg/l 0.001 <0.001	5	pH Value	1	6.5-8.5	7.38	7.41
Iron (as Fe) mg/l 0.3 0.29 Chloride (as C1) mg/l 250 51.2 Residual, free Chlorine mg/l 0.2 ND Dissolved Solids mg/l 500 216.0 216.0 Dissolved Solids mg/l 75 51.6 216.0 Magnesium (as Mg) mg/l 75 51.6 216.0 Magnesium (as Mg) mg/l 0.05 <0.05	9	Total Hardness (as CaCO ₃)	mg/l	300	124.0	132.0
Chloride (as CI) mg/l 250 51.2 Residual, free Chlorine mg/l 0.2 ND Desirable Characteristics Dissolved Solids mg/l 500 216.0 Calcium (as Ca) mg/l 75 51.6 Magnesium (as Mg) mg/l 75 51.6 Magnesium (as Mg) mg/l 0.05 <0.05	7	Iron (as Fe)	mg/l	0.3	0.29	0.34
Residual, free Chlorine mg/l 6.2 ND Desirdable Characteristics mg/l 500 216.0 Calcium (as Ca) mg/l 75 51.6 51.6 Calcium (as Ca) mg/l 75 51.6 51.6 Magnesium (as Ca) mg/l 75 51.6 51.6 Magnesium (as Cu) mg/l 0.05 <0.055	8	Chloride (as Cl)	mg/l	250	51.2	60.2
Desirable Characteristics mg/l 500 216.0 Dissolved Solids mg/l 75 51.6 Calcium (as Ca) mg/l 75 51.6 Magnesium (as Mg) mg/l 75 51.6 Magnesium (as Cu) mg/l 0.05 24.6 Copper (as Cu) mg/l 0.05 <0.05	6	Residual, free Chlorine	mg/l	0.2	ND	ND
Dissolved Solids mg/l 500 216.0 Calcium (as Ca) mg/l 75 51.6 Magnesium (as Mg) mg/l 30 24.6 Copper (as Cu) mg/l 0.05 <0.05		Desirable Characteristics				
Calcium (as Ca) mg/l 75 51.6 Magnesium (as Mg) mg/l 30 24.6 Copper (as Cu) mg/l 0.05 <0.05	10	Dissolved Solids	mg/l	200	216.0	228.0
Magnesium (as Mg) mg/l 30 24.6 Copper (as Cu) mg/l 0.05 <0.05	Ξ	Calcium (as Ca)	mg/l	75	51.6	44.6
Copper (as Cu) mg/l 0.05 Manganese (as Mn) mg/l 0.1 0.021 Sulphate (as SO ₄) mg/l 200 6.1 Nitrate (as NO ₅) mg/l 45 2.6 Fluoride (as F) mg/l 1 0.034 Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001	12	Magnesium (as Mg)	l/gm	30	24.6	26.2
Manganese (as Mn) mg/l 0.1 0.021 Sulphate (as SO ₄) mg/l 200 6.1 Nitrate (as NO ₅) mg/l 45 2.6 Fluoride (as F) mg/l 1 0.034 Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001	13	Copper (as Cu)	mg/l	0.05	<0.05	<0.05
Sulphate (as SO ₄) mg/l 45 2.6 Nitrate (as NO ₅) mg/l 45 2.6 Fluoride (as F) mg/l 1 0.034 Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001	14	Manganese (as Mn)	mg/l	0.1	0.021	0.026
Nitrate (as NO ₃) mg/l 45 2.6 Fluoride (as F) mg/l 1 0.034 Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001	15	Sulphate (as SO ₄)	mg/l	200	6.1	9.9
Fluoride (as F) mg/l 1 0.034 Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001	91	Nitrate (as NO ₃)	mg/l	45	2.6	2.8
Phenolic Compounds (as C ₆ H ₅ OH) mg/l 0.001 <0.001 Mercury (as Hg) mg/l 0.001 <0.001	17	Fluoride (as F)	l/gm	1	0.034	0.042
Mercury (as Hg) mg/l 0.001 <0.001 Cadmium (as Cd) mg/l 0.01 <0.001	18	Phenolic Compounds (as C ₆ H ₅ OH)	mg/l	0.001	<0.001	<0.001
Cadmium (as Cd) mg/l 0.01 < 0.001 Selenium (as Se) mg/l 0.01 * <0.001	19		mg/l	0.001	<0.001	<0.001
Selenium (as Se) mg/l 0.01 CO.001 Arsenic (as As) mg/l 0.05 CO.001 Cyanide (as CN) mg/l 0.05 ND	20	Cadmium (as Cd)	mg/l	0.01	<0.001	<0.001
Arsenic (as As) mg/l 0.05 <0.001 Cyanide (as CN) mg/l 0.05 ND	21	Selenium (as Se)	mg/l	0.01		<0.001
Cyanide (as CN) mg/l 0.05 ND	22	Arsenic (as As)	l/gm	0.05	<0.001	<0.001
	23	Cyanide (as CN)	mg/l	0.05	ND	ND

GW2: Sandhy Guta BW

(An Enviro Engineering Consulting Cell)

ISO 9001 : 2008 ISO A001 : 2004 OHSAS 18001 : 2007

Ref.:

Date:

2	24 Lead(ac Pb)	male	0.05	<0.001	<0.001
25	Zinc (as Zn)	mg/l	5	3.4	4.6
26	Anionic Detergents (as MBAS)	mg/l	0.2	<0.2	<0.2
27	7 Chromium (as Cr ⁺⁶)	mg/l	0.05	<0.05	<0.05
28	Mineral Oil	mg/l	10.0	<0.01	<0.01
29) Alkalinity	mg/l	200	9.98	94.2
30	Aluminium as(AI)	mg/l	0.03	. <0.01	<0.01
31	Boron (as B)	mg/l	1	<0.5	<0.5
32	Poly Aromatic Hydrocarbon as PAH	l/gn	-	<0.0001	<0.0001
33	Pesticide	mg/l	Absent	Absent	Absent

(An Enviro Engineering Consulting Cell)

Enulab /19/R-4853

05.10.19

Monitoring Date Analysis Result (m/bgl) Nimera Village 6.6	Jun-19 Aug	TWO ISTN	6.1	9.9	Nimera Village	1
	Analysis Result (m/bgl) 6.6	Monitoring Date Nimera Village	4.4	4.6	Bamebari BW	2

GROUND WATER LEVEL ANALYSIS REPORT

(An Enviro Engineering Consulting Cell)

ISO 14001: 2004 OHSAS 18001: 2007

Date: 03/07/19

Ref.: Enufab /19/R-1208

GROUND WATER TRACE METALS ANALYSIS REPORT FOR THE MONTH OF JUNE-2019

1. Name of Industry

Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Date of sampling

17.06.2019

3. Sample collected by

VCSPL Representative in presence of TATA Representative

SI.	22.30			Standard as	Analysis Results
No	Parameter	Testing Methods	Unit	per IS - 10500:2012	GW-1:B/W at Panchayat Office
1	Iron (as Fe)	APHA 3500Fe, B	mg/l	0.3	0.28
2	Copper (as Cu)	APHA 3111 B,C	mg/l	0.05	< 0.05
3	Manganese (as Mn)	APHA 3500Mn B	mg/l	0.1	0.018
4	Chromium (as Cr ⁺⁶)	APHA 3500Cr B	mg/l		< 0.05
5	Mercury (as Hg)	APHA 3500 Hg	mg/l	0.001	< 0.001
6	Cadmium (as Cd)	APHA 3111 B,C	mg/l	0.003	< 0.01
7	Selenium (as Se)	APHA 3114 B	mg/l	0.01	< 0.001
8	Arsenic (as As)	APHA 3114 B	mg/I	0.01	< 0.001
9	Lead (as Pb)	APHA 3111 B,C	mg/l	0.01	< 0.01
10	Zinc (as Zn)	APHA 3111 B,C	mg/l	5 -	2.6

ney Services Pvt. Ltd

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Ref.: Comlab/19/R-3035

Date: 20 . 08 · 19

HEAVY METALS (GROUND WATER) ANALYSIS REPORT FOR THE MONTH OF AUGUST-2019

1. Name of Industry : Bamebari Manganese Mines (M/s TATA Steel Limited)

2. Sampling Location : GW1: Bore Well at Panchayat Office

3. Date of Sampling : 11.08.2019

4. Date of Analysis : 12.08.2019 to 19.08.2019

5. Sample Collected by : VCSPL Representative in presence of TATA Representative

Sl. No	Parameter	Testing Methods	Unit	Standard as p Amended o	per IS -10500:2012 on 2015 & 2018	Analysis Results
		40		Acceptable Limit	Permissible Limit	GW-1
1	Iron (as Fe)	By AAS Method APHA 23 RD Ed,2017: 3111, B	mg/l	1	No Relaxation	0.34
2	Copper (as Cu)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.05	1.5	< 0.05
3	Manganese (as Mn)	Persulfate Method APHA 23 RD Ed,2017: 3500Mn B	mg/l	0.1	0.3	0.012
4	Chromium (as Cr ⁺⁶)	Partition-Gravimetric Method APHA 23 RD Ed,2017: 5520 B	mg/l			< 0.05
5	Mercury (as Hg)	AAS Method APHA 23 RD Ed,2017: 3112 B	mg/l	0.001	No Relaxation	< 0.001
6	Cadmium (ās Cd)	AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	0.003	No Relaxation	< 0.01
. 7	Selenium (as Se)	By AAS Method APHA 23 RD Ed,2017: 3500 Se C	mg/l	0.01	No Relaxation	< 0.001
8	Arsenic (as As)	By AAS Method APHA 23 RD Ed,2017: 3114 B	mg/l	0.01	No Relaxation	< 0.001
9	Lead (as Pb)	By AAS Method APHA 23 RD Ed,2017 3111 B	mg/l	0.01	No Relaxation	< 0.01
10	Zinc (as Zn)	By AAS Method APHA 23 RD Ed,2017: 3111 B	mg/l	5	- 15	3.8

JÅ NABCE

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Annexure - I: Surface Water Quality Monitoring at Bamebari Mn Mine (W1: Confluence Point at Kassia Nallah and W2: Intake Point at Tindharia)

Bamebari (Confluence Point at Kassia Nallah)	e Point at Kassi	ia Nallah)	April'19	May'19	June'19	July-19	Aug-19	Sept-19
Parameters	Unit	Standard	1st Report					
bissolved Oxygen (minimum)	mg/l	4	5.9	5.6	5.53	5.4	5.3	5 1
BOD (3) days at 27°C (max)	mg/l	3	< 1.8	< 1.8	<1.8	< 1.8	<1.8	<18
Total Coli form	MPN/ 100 ml	5000	260.0	220.0	173.33	180:0	120.0	110.0
pH Value	1	6.0-9.0	7.52	7.46	7.57	7.56	7.51	7.46
Colour (max)	Hazen	300	CL	CL	CL	4.0	Ω	2
Total Dissolved Solids	mg/l	1500	156.0	158.0	157.33	151.8	154	148.0
Copper as Cu (max)	mg/l	1.5	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Iron as Fe (max)	mg/l	0.5	0.58	0.61	0.48	0.39	0.32	0.21
Chloride (max)	mg/l	600	38.0	33	58.07	61.2	61.2	60.6
Sulphates (SO ₄) (max)	mg/l	400	4.6	5.1	3.03	3.8	3.2	3.0
Nitrate as NO ₃ (max)	mg/l	50	2.1	2.04	2.53	2.6	2.2	2.1
Fluoride as F (max)	mg/l	1.5	0.028	0.017	0.02	0.021	0.021	0.018
Phenolic Compounds as C ₆ H ₅ OH (max)	mg/l	0.005	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Cadmium as Cd (max)	mg/l	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Selenium as Se (max)	mg/l	0.05	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Arsenic as As	mg/l	0.2	<0.004	<0.004	<0.004	<0.004	<0.004	<0.004
Cyanide as CN (max)	mg/l	0.05	ND	ND	ND	ND	ND	ND
Lead as Pb(max)	mg/l	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zinc as Zn(max)	mg/l	15	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Hexa Chromium as Cr **	mg/l	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Anionic Detergents (max)	mg/l	1.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

(An Enviro Engineering Consulting Cell)

SAS 18001:2007

Enwals 19 12-4844

6	I		T			I				T	Γ	T	T			T	T	T	Τ	Γ		
Sept-19	1st Report	26	× ×	120	7.22	C	132	<0.02	0.56	31	5.1	2.2	0.018	<0.05	<0.01	<0.005	<0.004	QN	<0.1	<0.03	<0.05	
Aug-19	1st Report	6.2	×1×	150	7.56	CL	160.2	<0.02	0.34	62.8	3.6	2.8	0.029	<0.05	<0.01	<0.005	<0.004	ON	<0.1	<0.03	<0.05	
July.19	1st Report	6.1	×1.8	110	7.61	2	162.9	<0.02	0.36	0.99	4.2	3.2	0.036	<0.05	<0.01	<0.005	<0.004	N	<0.1	<0.03	<0.05	
June'19	1st Report	6.03	8.7	216.67	7.65	CL	174.67	<0.02	0.42	51.53	3.33	2.60	0.03	<0.05	<0.01	<0.005	<0.004	ND	<0.1	<0.03	<0.05	
May'19	1st Report	6.03	<1.8	217.0	7.65	CL	174.67	<0.02	0.42	51.53	3.33	2.60	0.03	<0.05	<0.01	<0.005	<0.004	N	<0.1	<0.03	<0.05	
April'19	1st Report	6.2	< 1.8	320.0	7.61	CT	168	<0.02	0.62	42.0	5.8	3.2	0.051	<0.05	<0.01	<0.005	<0.004	ND	<0.1	<0.03	<0.05	
	Standards	4	3	2000	0.6-0.9	300	1500	1.5	0.5	009	400	50	1.5	0.005	0.01	0.05	0.2	0.05	0.1	15	0.05	
at Tindharia)	Unit	I/gm	I/gm	MPN/ 100 ml	-	Hazen	l/gm	l/gm	l/gm	l/gm	I/Bm	l/gm	l/gm	l/8m	l/gm	l/gm	l/gm	l/gm	l/gm	l/gm	l/gm	
Bamebari (Intake Point at Tindharia)	Parameters	Dissolved Oxygen (minimum)	BOD (3) days at 27°C (max)	Total Coli form	pH√alue	Colour (max)	Total Dissolved Solids	Copper as Cu (max)	Iron as Fe (max)	Chloride (max)	Sulphates (SO ₄) (max)	Nitrate as NO ₃ (max)	Fluoride as F (max)	Phenolic Compounds as C ₆ H ₅ OH (max)	Cadmium as Cd (max)	Selenium as Se (max)	Arsenic as As	Cyanide as CN (max)	Lead as Pb(max)	Zinc as Zn(max)	Hexa Chromium as Cr *6	

(An Enviro Engineering Consulting Cell)

Why Happing 1.00.00 100	05.10.19
	-
BaP (ng/m³) (n	
C ₆ H ₆ (μg/m³) (0.001 (0.00	·.
As (ng/m³) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	3 SEVICES AL
Ni As (ng/m ³) (ng/m	L. WURST
Pb (μg/m³) (ωg/m³) (ω	22,140,17
STEEL LTD. Office Building CO	* ,
A STEEL LT] Office Buildin ' CO NI mg/m³ (μg/ 0.47 22. 0.39 25. 0.39 25. 0.39 25. 0.39 25. 0.42 27. 0.65 22. 0.65 22. 0.65 22. 0.65 24. 0.76 24. 0.76 28. 0.76 28. 0.76 28. 0.76 28. 0.76 28. 0.76 28. 0.64 24. 0.76 27. 0.64 27. 0.64 27. 0.64 27. 0.64 27.1	
NOX O ₃ CO NH ₃ (µg/m³) (µg/	٠
NOX (µg/m³) 13.24 14.39 16.96 16.92 12.84 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.68 11.96 17.96 11.41 11.41 11.41 11.41 11.84 9.2	
	8
AAQ Mo S: BAMI PM25 (µg/m³) 28.03 31.41 28.03 31.41 24.56 23.11 15.86 15.86 35.75	
Annexure – II AAQ Monitoring te of the Mines: BAMEBARI M hly PM ₁₀ PM ₂₅ SO ₂ lige (µg/m³) (µg/m³) (µg/m³) hly PM ₁₀ S3.02 28.03 7.43 hly PM ₁₀ PM ₂₅ SO ₂ lly 44.07 23.11 7.98 hly PM ₁₀ PM ₂₅ SO ₂ ge (µg/m³) (µg/m³) (µg/m³) ge (µg/m³) (µg/m³) (µg/m³) hly PM ₁₀ PM ₂₅ SO ₂ hgy 33.28 12.13 hm ₁₀ PM ₂₅ SO ₂ hg/m³) (µg/m³) (µg/m³) hgy R2.09 33.28 12.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₁₀ PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₂₅ SO ₂ hgy A9.86 27.81 8.13 hgy PM ₂₅ SO ₂ hgy PM ₂₅ SO ₂ hgy PM ₂₅ SO ₂ hgy R3.33 7.44 hgy R3.37 42.93 7.44 hgy R3.37 46.59 8.70 hgy R46.59 26.14 8.50 hgy R46.59 26.14 8.50	
Annexure – II AAQ Monitori Name of the Mines: BAMEBARI Monthly PM ₁₀ PM ₂₅ SO ₂ Average (µg/m³) (µg/m³) (µg/m³) Jun-19 54.47 31.41 8.40 Jun-19 54.37 24.56 8.10 Aug-19 54.37 24.56 8.10 Aug-19 54.37 24.56 8.10 Aug-19 44.07 23.11 7.98 Sep-19 28.31 15.86. 4.86 Average (µg/m³) (µg/m³) (µg/m³) Monthly PM ₁₀ PM ₂₅ SO ₂ Average (µg/m³) (µg/m³) (µg/m³) Aug-19 51.71 24.31 13.77 Aug-19 51.71 24.31 13.77 Aug-19 51.71 24.31 13.77 Aug-19 67.46 41.94 6.68 Monthly PM ₁₀ PM ₂₅ SO ₂ Average (µg/m³) (µg/m³) (µg/m³) 10.91 Aug-19 70.57 35.41	,

(An Enviro Engineering Consulting Cell)

		3			4	(0.001 SH	15	8001 2004
	Mn	µg/m³	V	0.00	<0.001	<0.00	<0.001	05.10.
The second secon	ВаР	(ng/m³)		< 0.002	< 0.002		< 0.002	
	C ₆ H ₆	(µg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	
	As	(ng/m³)		< 0.001		< 0.001	< 0.001	
	ïZ	(ng/m³)		< 0.01	< 0.01	< 0.01	< 0.01	
	Pb	(µg/m³)		< 0.001	< 0.001	< 0.001	< 0.001	250
	NH3	(µg/m³)	<20		<20	<20	<20	ALLICY SAN
	8	mg/m³)		0.71	0.74	0.59	0.41	SIONTE
	ő	(µg/m³)	<4 <4		<4	4>	44	<i>a</i> -
	NOX	(µg/m³)	,	71.7	10.6	13.8	9.8	12
	SO,	(µg/m³)		4.0	9.2	8.6	4.8	
		PM _{2.5} (μg/m²) (μg/m³)	C	38.8	30.8	29.4	14.90	
	PM ₁₀	(µg/m³)		2.09	51.6	50.2	26.6	
	-hlv	age		19	19	-19	.19	

	Mn 3	m/8m	< 0.001	<0.001	<0.001	<0.001	
	BaP	(m/gu)	< 0.002	<0.002	<0.002	<0.002	
	C ₆ H ₆	(m/gm)	< 0.001	<0.001	<0.001	<0.001	
	As ,	(m/gu)	< 0.001	<0.001	<0.001	<0.001	
	N.	(m/gu)	< 0.01	<0.01	<0.01	<0.01	
A STATE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN THE PERSON NAMED IN THE PERSON NAMED IN	Pb	(µg/m_)	< 0.001	<0.001	<0.001	<0.001	
Jaganathpur	NH ₃	(mg/m_)	<20	<20	<20	<20	
Р	8	mg/m_)	0.61	99.0	0.64	0.44	
	033	(mg/m_)	4>	44	44	4	
	NOX	(µg/m′)	10.2	11.6	10.8	10.2	
	502	(ˈm/gm])	7.4	8.2	8.1	4.8	
	PM _{2.5}	(µg/m²)	36.2	30.2	22.6	17.14	
	PM ₁₀	(µg/m³)	58.8	51.8	45.8	30.6	
	Monthly	Average	Jun-19	[lul-19	Aug-19	Sep-19	

						B	Bandhubaria						
Monthly	PM10	PM3.c	50,	NOX	o,	8	NH ₃	Pb	ïZ	As	C ₆ H ₆	ВаР	M
verage	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m³)	(µg/m ₃)	mg/m³)	(µg/m ₃)	(µg/m³)	(ng/m³)	(ng/m³)	(µg/m³)	(ng/m³)	µg/m³)
[un-19	51.2	30.6	7.26	11.4	4>	99.0	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	< 0.001
[ul-19	52.6	30.8	9.8	10.8	4>	0.72	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Aug-19	45.8	22.46	8.1	13.6	44	0.64	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Sep-19	38.2	21.39	5.2	10.6	44	0.48	<20	< 0.001	< 0.01	< 0.001	< 0.001	< 0.002	<0.001
Dailar	2												

ISO 14001 : 2004 OHSAS 18001 : 2007

5.10.2019

(An Enviro Engineering Consulting Cell)

Forward 19 R-4857

Г			-			1			T		Т
			CPCB	Ctonding	Stanuaro		70	to the designation of the least	40	наниции	70
					Sent-19	72 20 20	49.2		39.0		42.6
		uivalent	D(A) Ion	bar (w) or	Aug-19	0	48.1		36.8		48.6
		Night time Equivalent	Noise I ovol in dB/A 12.		July-19 Aug-19 Sent-19		48.0		34.2		49.6
		įZ	Nois	TOTO	June-19	1	51.7		39.2		9.05
2010	77077)	June	0	50.8 51.2		38.8 39.2		50.4
RI MANGANESE MINES, HINE 2010	THE COLL	מטמט	Crub	Standard			75		50		75
ANESE MI				0 1 1	Aug-19 Sept-19		62.8		46.0		61.9
RI MANG	ing lond	nvalent	IB(A) led	A 4	Aug-19		66.4		44.9		65.4
BAMEBA	av time Dan	Day mile Edul	Noise Level in dl	Tulky 10	July-17		0.89		48.0		66.2
	Ì	Da	Nois	.Inne-10			64.8		44.4 46.2		70.8
				.Imm			00.7 64.8		44.4		72.8
		Location	Name			-	dius umo i		Hospital		Mines Area 72.8
	,	ocation	1			1	I-NI		N-2		N-3

AMBIENT NOISE REPORT

(An Enviro Engineering Consulting Cell)

Enwab/19/R-4858

05.10.2019

	Day Time	Result	55.6	61.2	55.1	88.4	84.1	82.9	85.2	90.1	54.8	60.2	56.2	84.8	85.2	84.2	84.6	68.2	82.6	78.2	79.2	80.3	83.2	78.2	76.4	74.8	81.6	79.8	76.4
NOISE	Unit														dB(A)														
EQUIPMENT NOISE	Name of Location		Near WTP	Near Workshop	Near STP	Office DG	OD-09A-6541(Truck)	OD-09N-9468(Truck)	Volvo EC 210 (Sovel-1)	Komatsu D-65E(Droger)	OD-09F-2105(Truck)	L&T Komastuk 260	Volvo EC 210BLC	OD09A56666	JH-05B9458	Volvo EC 212 BLC	OD-09F-2108(Truck)	STP	DG Set D-Quarry	Volvo –EC 300 DL-1	Volvo-EC 360DL-2	L&T Komstu	Droger SD-13	Water Tank	Dumpher-OD-09C-1371	Dumpher-OD-09C-1373	Pump House	L&T Komstu-(PC-200)	Dumpher-OR-09P-9508
	Date									28.06.2019												1	30.06.2019						
	S S			7	3	4	S	9	7	∞ .	6	10	=	12	13	14	15	91 !	17	18	19	20	21	22	23	24	25	26	27

EQUIPMENT NOISE

(An Enviro Engineering Consulting Cell)

			*						
78.2	64.8	62.8	75.6	817	78.2	78	81	79	08
						1			
Dumpher-OR-09N-9463	Portable Pump House	Scene Big Machine	Komatsu (PC-200) L& T	Loader (TL 340 H)	Truck Running Near Plant	kdbellco-01	Volvo-01	Truck TATA OR-09-A 6059	Truck TATA OR-09-C 1374
					Ŷ				
28	29	30	31	32	33	34	35	36	37

Date Name of Location Unit Day Time Near WTP Result 56.8 Near Workshop 69.6 Office DG 69.6 OD-09A-6541(Truck) 68.4 OD-09A-6541(Truck) 64.6			EQUIPMENT NOISE	NOISE	
Name of Location Unit Near WTP Near WTP Near Workshop dB (A) Office DG OD-09A-6541(Truck)					
Near WTP dB (A) Near STP dB (A) Office DG OD-09A-6541(Truck)		Date	Name of Location	Unit	Day I me
Near WTP Near Workshop dB (A) Office DG OD-09A-6541(Truck)					Result
Near Workshop dB (A) Office DG OD-09A-6541(Truck)			Near WTP		56.8
Near STP dB (A) Office DG OD-09A-6541(Truck)			Near Workshop		9 69
	-	21.09.2019	Near STP	dB (A)	0.00
	_		Office DG		32.8
	7				68.4
			OD-09A-6541(Truck)		64.6

or Visiontek Consultancia (Specifical Days 1 4.3

(An Enviro Engineering Consulting Cell)

ISO 14001 : 2004 OHSAS 18001 : 2007

Date: 05.10.19

Ref.: Enwal 19 R-4856

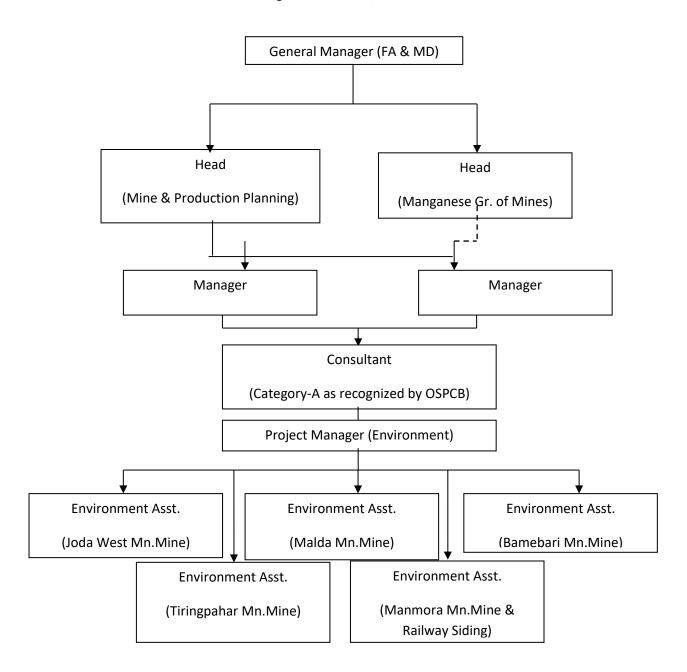
SI. Parameters Unit For discharge of Environments July-19 Aug-19 Sept-19 1 Colour Hazen Environments C.C.				General Standards		Analysis Report	
Colour	15	Parameters	Unit	for discharge of Environmental Pollutants Part A- Effluents	July-19	Aug-19	Sept-19
Oddour - Unobjectionable U/O U/O U/O U/O PH at 25 degree C - 5.5-9.0 7.48 7.42 7.48 Total Dissolved Solids mg/l - 1.48 152 166 Flucide as F mg/l 2.0 0.025 0.028 0.031 Flucide as F mg/l 1.0 ND ND ND Iron as Fe mg/l 1.0 0.056 0.58 0.066 Manganese as Mn mg/l 2.0 1.26 1.18 1.12 Nitrate as NO3 mg/l 1.0 0.05 0.058 0.066 Selenium as Se mg/l 1.0 -0.05 -0.05 -0.05 Selenium as Se mg/l 0.05 -0.001 -0.001 -0.001 Cyanide as CNA mg/l 0.01 -0.001 -0.001 -0.001 Lead as Pb mg/l 0.01 -0.001 -0.001 -0.001 -0.001 Inchard Chromium as Cr+6	_	Colour	Hazen	5	C	CL	CL
Pittat 25 degree C	2	Odour		Unobjectionable	O/N	0/0	O/N
Total Dissolved Solids mg/l 148 152 166 Copper as Cu mg/l 3.00 <0.025 <0.025 <0.025 Fluoride as F mg/l 2.00 0.026 0.028 0.031 Iron as Residual Chlorine mg/l 1.00 ND ND ND ND Iron as Residual Chlorine mg/l 1.00 1.26 1.18 1.112 Iron as Residual Chlorine mg/l 1.00 1.26 1.18 1.112 Iron as Residual Chlorine mg/l 1.00 1.26 1.18 1.112 Iron as Selenium as Selenium as Selenium as Cd mg/l 0.05 <0.001 <0.001 <0.001 <0.001 Cadmium as Cd mg/l 0.01 <0.001 <0.001 <0.001 <0.001 Iron as Pb mg/l 0.01 <0.001 <0.001 <0.001 <0.001 Iron as Zn mg/l 0.01 <0.001 <0.001 <0.001 <0.001 Ironal Chromium as Cr+6 mg/l 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 Ironal Suspended Solids mg/l 1.00 2.00 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	3	pH at 25 degree C	•	5.5-9.0	7.48	7.42	7.48
Copper as Cu mg/l 3.0 <0.02 <0.02 <0.02 Fluoride as F mg/l 2.0 0.026 0.028 0.031 I Total Residual Chlorine mg/l 1.0 ND ND ND I ron as Fe mg/l 3.0 0.66 0.58 0.66 Manganese as Mn mg/l 2.0 1.26 1.18 1.12 Nitrate as NO3 mg/l 1.0 1.4 3.64 4.1 Phenolic Compounds as C6H5OH mg/l 1.0 -0.05 -0.05 -0.05 Selenium as Se mg/l 0.05 -0.001 -0.05 -0.05 -0.05 Cadmium as Cd mg/l 0.1 -0.001 -0.001 -0.001 -0.001 -0.001 Metcuty as Hg mg/l 0.0 -0.05 -0.001 -0.001 -0.001 -0.001 Nickel as Nj mg/l 0.0 -0.05 -0.05 -0.05 -0.001 Nickel as Nj mg/l 0.0 -0.05	_	Total Dissolyed Solids	l/gm		148	152	991
Fluoride as F mg/l 2.0 0.026 0.028 0.031 Total Residual Chlorine mg/l 1.0 ND ND ND ND Iron as Fe mg/l 2.0 0.66 0.58 0.66 Manganese as Mn mg/l 2.0 1.26 1.18 1.12 Nitrate as NO3 mg/l 1.00 1.4 3.64 4.1 Phenolic Compounds as C6H5OH mg/l 1.00 0.05 <0.005 <0.005 <0.005 <0.005 Cadmium as Se mg/l 0.05 <0.001 <0.001 <0.001 <0.001 <0.001 Cyanide as CN mg/l 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 Nickel as Ni mg/l 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 Nickel as Ni mg/l 0.01 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0	2	Copper as Cu	mg/l	3.0	<0.02	<0.02	<0.02
Total Residual Chlorine mg/l 1.0 ND ND ND Iron as Fe mg/l 3.0 0.66 0.58 0.66 Manganese as Mn mg/l 2.0 1.26 1.18 1.12 Nitrate as NO3 mg/l 10.0 1.4 3.64 4.1 Phenolic Compounds as C6H5OH mg/l 1.0 <0.05	2	Fluoride as F	l/gm	2.0	0.026	0.028	0.031
Iron as Fe mg/l 3.0 0.66 0.58 0.66 Manganese as Mn mg/l 2.0 1.26 1.18 1.12 Nitrate as NO3 mg/l 1.0 0.05 0.005 0.005 0.005 Selenium as Se mg/l 1.0 0.05 0.001 0.001 0.001 Cadmium as Cd mg/l 0.02 0.001 0.001 0.001 0.001 Cyanide as CN mg/l 0.01 0.01 0.001 0.001 0.001 Lead as Pb mg/l 0.01 0.01 0.001 0.001 0.001 Mercury as Hg mg/l 0.01 0.001 0.001 0.001 0.001 Nickel as Ni mg/l 0.2 0.005 0.005 0.005 0.005 Total Chromium as Cr mg/l 0.1 0.01 0.001 0.001 0.001 0.001 Vanadium as V mg/l 0.1 0.01 0.001 0.001 0.001 0.001 Vanadium as V mg/l 0.1 0.01 0.001 0.001 0.001 0.001 Vanadium as V mg/l 0.2 0.005	7	Total Residual Chlorine	l/gm	1.0	ND	ND	QN
Manganese as Mn mg/l 2.0 1.26 1.18 1.15 Nitrate as NO3 mg/l 10.0 1.4 3.64 4.1 Phenolic Compounds as C6H5OH mg/l 1.0 <0.05	~	Iron as Fe	l/gm	3.0	99.0	0.58	99.0
Nitrate as NO3 mg/l 10.0 1.4 3.64 4.1 Phenolic Compounds as C6H5OH mg/l 1.0 c.0.05 c.0.05 c.0.05 Selenium as Se	_	Manganese as Mn	l/gm	2.0	1.26	1.18	1.12
Phenolic Compounds as C6H5OH mg/l 1.0 <0.05 <0.05 <0.001 Selenium as Se mg/l 0.05 <0.001	0	Nitrate as NO3	mg/l	10.0	1.4	3.64	4.1
Selenium as Se mg/l 0.05 <0.001 <0.001 <0.001 Cadmium as Cd mg/l 2.0 <0.001	1	Phenolic Compounds as C6H5OH	l/gm	1.0	<0.05	<0.05	<0.05
Cadmium as Cd mg/l 2.0 <0.001 <0.001 <0.001 Cyanide as CN mg/l 0.1 <0.01	2	Selenium as Se	mg/l	0.05	<0.001	<0.001	<0.001
Cyanide as CN mg/l 0.2 ND ND ND Lead as Pb mg/l 0.11 <0.011	3	Cadmium as Cd	mg/l	2.0	<0.001	<0.001	<0.001
Lead as Pb mg/l 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	4	Cyanide as CN	mg/l	0.2	ON	ON	QN
Mercury as Hg mg/l 0.01 <0.001 <0.001 <0.001 Nickel as Ni mg/l 3.0 <0.05	2	Lead as Pb	mg/l	0.1	<0.01	<0.01	<0.01
Nickel as Ni mg/l 3.0 <0.05 <0.05 <0.004 Arsenic as As mg/l 0.2 <0.004	9	Mercury as Hg	l/gm	0.01	<0.001	<0.001	<0.001
Arsenic as As mg/l 0.2 <0.004 <0.004 <0.004 Total Chromium as Cr mg/l 2.0 <0.05	7	Nickel as Ni	mg/l	3.0	<0.05	<0.05	<0.05
Total Chromium as Cr mg/l 2.0 <0.05 <0.05 <0.05 Zinc as Zn mg/l 5.0 <0.05 <0.05 <0.05 Hexavalent Chromium as Cr+6 mg/l 0.1 <0.01 <0.01 <0.01 <0.001 Vamadium as V mg/l 100 \$5.8 44.2 48.0 Total Suspended Solids mg/l shall not exceed 50C above the	8	Arsenic as As	mg/l	0.2	<0.004	<0.004	<0.004
Zinc as Zin mg/l 5.0 <0.05 <0.05 <0.01 Hexavalent Chromium as Cr+6 mg/l 0.1 <0.01	6	Total Chromium as Cr	mg/l	2.0	<0.05	<0.05	<0.05
Hexavalent Chromium as Cr+6 mg/l 0.1 <0.01 <0.01 <0.01 <0.01 Vanadium as V mg/l 0.2 <0.001 <0.001 <0.001 Total Suspended Solids mg/l 100 \$52.8 44.2 48.0 Temperature 0C receiving water temperature temp	0	Zinc as Zn	mg/l	5.0	<0.05	<0.05	<0.05
Vanadium as V mg/l 0.2 <0.001 <0.001 <0.001 <0.001	_	Hexavalent Chromium as Cr+6	l/gm	0.1	<0.01	<0.01	<0.01
Total Suspended Solids mg/l 100 \$2.8 44.2 48.0	2	Vanadium as V	mg/l	0.2	<0.001	<0.001	<0.001
Temperature 0C 50C above the receiving water temperature	3	Total Suspended Solids	mg/l		52.8	44.2	48.0
		Temperature	0C	shall not exceed 50C above the receiving water temperature	28	28	

OIL SEPARATION PIT ANALYSIS REPORT WW1: Workshop Water

(An Enviro Engineering Consulting Cell)

Ref.: Enwalo 19 12-4856

Date: 05.10.19


25	Dissolved Oxygen	I/gm	1	5.8	5.2	5.6
26	BOD	l/gm	30	<1.8	<1.8	<1.8
27	COD	l/gm	250	28	22	26
28	Oil & Grease	l/gm	10	QN	ND	ND
29	Ammonical Nitrogen as N	l/gm	50	ND	ND	ND
30 ·	Total Kjedahl Nitrogen as N	l/gm	100	1.8	1.7	1.8
31	Sulphide as S	l/gm	2.0	ND	QN	ND
32	Free Ammonia as NH3	l/gm	. 5.0	ON	ND	ND
33	Particulate Size of Suspended Solids	mg/l	850 µm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve	Passes through 850 mm IS Sieve
34	Bio-assay	mg/l	90% survival in 100% effluent	90% survival in 100% effluent	90% survival in 100% effluent	90% survival in 100% effluent
35	Dissolved Phosphates as PO4	mg/l	5.0	<0.05	<0.05	<0.05

ANNEXURE-X LIST OF ENVIRONMENTAL MONITORING EQUIPMENT Bamebari Iron and Manganese Mine, M/S TATA STEEL LIMITED

LIST OF ENVIRONM	MENTAL MONITORING EQUIPMENT	
Ambient Air Quali		
Sl.No.	Name of the Instrument	Parameter
1	Respirable Dust sampler	PM ₁₀
2	Fine Particulate Sampler	PM _{2.5}
3	Spectrophotometer UV-Visible range	SO ₂ ,NO _x
4	NDIR	CO
5	AAS	Manganese
Other Parapherna	lia for analysis of air quality are also avai	
Water Quality	, , ,	•
Sl.No.	Name of the Instrument	Parameter
1	Analytical weighing Balance	Used for weighing the chemicals
2	Micro Balance	Used for weighing CRMs
		All Heavy metals (Arsenic, Mercury,
1	AAS with VGA and Hallow cathode	Selenium, Cadmium, Chromium,
3	lamps	Cobalt, Iron, Lead, Manganese, Zinc,
		Aluminium, etc)
		Nitrate, Nitrite, Sulphate,
4	Spectrophotometer UV-Visible range	Chromium(VI),Fluoride, Cyanide,
		Phenolic compounds
5	Flame Photometer	Sodium ,Potassium
6	Ion Analyzer	Fluoride
7	BOD Incubator	BOD
8	COD Digester	COD
9	Furnace	Total volatile solids, Fixed solids
10	Hot Air Oven	Total Suspended Solids, Total
10	Hot All Ovell	Dissolved Solids
11	pH meter	рН
12	Conductivity meter	Conductivity
13	Turbidity Meter	Turbidity
14	Bacteriological Incubator	Total coli form and fecal coli form
15	Autoclave	sterilization
16	Microscope	Bacteriological colony count
17	Magnetic stirrer	Stirring purpose
18	Vacuum filtration unit	Rapid filtration
19	Water Bath	Boiling and evaporation purpose
20	Cadmium reduction column	Nitrate
21	Fluoride distillation unit	Fluoride
22	Kjeldal flask	Ammonia and Organic Nitrogen
23	Hot Plate	Digestion
24	Pizometer	Water level monitoring
25	Aquarium	Bio assay test

ANNEXURE-XI ORGANIZATION STRUCTURE Bamebari Iron and Manganese Mine, M/S TATA STEEL LIMITED

